DOI QR코드

DOI QR Code

Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots

양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상

  • Ji, Seung Hwan (Department of Energy Engineering, Dankook University) ;
  • Yun, Hye Won (Department of Energy Engineering, Dankook University) ;
  • Lee, Jin Ho (Department of Energy Engineering, Dankook University) ;
  • Kim, Bum-Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 지승환 (단국대학교 에너지공학과) ;
  • 윤혜원 (단국대학교 에너지공학과) ;
  • 이진호 (단국대학교 에너지공학과) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2020.11.02
  • Accepted : 2020.12.08
  • Published : 2021.01.27

Abstract

In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

Keywords

References

  1. J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energ. Rev., 16, 5848 (2012). https://doi.org/10.1016/j.rser.2012.04.044
  2. H. L. An, H.-R. Kang, H. J. Sun, J. H. Han and H.-J. Ahn, Korean J. Mater. Res., 25, 672 (2015). https://doi.org/10.3740/MRSK.2015.25.12.672
  3. B. O'regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  4. K. Fan, R. Li, J. Chen, W. shi and T. Peng, Sci. Adv. Mater., 5, 1596 (2013). https://doi.org/10.1166/sam.2013.1615
  5. L. Y. Lin, C. P. Lee, K. W. Tsai, M. H. Yeh, C. Y. Chen, R. Vittal, C. G. Wu and K. C. Ho, Prog. Photovoltaics: Res. Appl., 20, 181 (2012). https://doi.org/10.1002/pip.1116
  6. S. H. Ji, H. S. Park, D. Y. Kim, D. H. Han, H. W. Yun and W.-B. Kim, Korean J. Mater. Res., 29, 183, (2019). https://doi.org/10.3740/MRSK.2019.29.3.183
  7. M. H. Yeh, C. P. Lee, C. Y. Chou, L. Y. Lin, H. Y. Wei, C. W. Chu and K. Ho, Electrochim. Acta, 57, 277 (2011). https://doi.org/10.1016/j.electacta.2011.03.097
  8. X. Gu, D. Song, Y. Zhao and Y. Qiang, Rare Met. Mater. Eng., 43, 525 (2014). https://doi.org/10.1016/S1875-5372(14)60069-2
  9. C. Liu, L. Mu, J. Jia, X. Zhou and Y. Lin, Electrochim. Acta, 111, 179 (2013). https://doi.org/10.1016/j.electacta.2013.07.220
  10. L. Peng, H. Hong, Y. Shi, X. Zhou, Y. Lin and J. Jia, J. Alloys compd., 765, 355 (2018). https://doi.org/10.1016/j.jallcom.2018.06.095
  11. T. T. Ha, C. H. Chi, N. T. Vy, N. T. Thoa, T. D. Huynh and Q. V. Lam, Environ. Prog. Sustainable Energy, 34, 1774 (2015). https://doi.org/10.1002/ep.12150
  12. M. S. Ahmad, A. K. Pandey and R. N. Abd, Renew. Sustain. Energ. Rev., 77, 89 (2017). https://doi.org/10.1016/j.rser.2017.03.129
  13. S. Shalini, R. Balasundaraprabhu, T. S. Kumar, N. Prabavathy, S. Senthilarasu and S. Prasanna, Int. J. Energy Res., 40, 1303 (2016). https://doi.org/10.1002/er.3538
  14. T. Sogabe, Q. Shen and K. Yamaguchi, J. Photonics Energy, 6, 040901 (2016). https://doi.org/10.1117/1.JPE.6.040901
  15. S. S. Mali, H. Kim, P. S. Patil and C. K. Hong, Dalton Trans., 42, 16961 (2013). https://doi.org/10.1039/c3dt51287h
  16. J. Chen, D. W. Zhao, J. L. Song, X. W. Sun, W. Q. Deng, X. W. Liu and W. Lei, Electrochem. Commun., 11, 2265, (2009).
  17. P. K. Santra and P. V. Kamat, J. Phys. Chem. C, 132, 877, (2013).
  18. J. Kusuma and R. G. Balakrishna, Solar Energy, 159, 682 (2018). https://doi.org/10.1016/j.solener.2017.11.037
  19. H. S. Park, D. W. Jeong, B. S. Kim, S. Y. Joo, C. G. Lee and W. B. Kim, J. Korean Powder Metall. Inst., 24, 1 (2017). https://doi.org/10.4150/KPMI.2017.24.1.1
  20. D. W. Jeong, J. Y. Park, H. W. Seo, N. V. Myung, T. Y. Seong and B. S. Kim, Appl. Surf. Sci., 415, 19 (2017). https://doi.org/10.1016/j.apsusc.2016.12.110
  21. H. Park, J. Choi, J.-P. Choi and W.-B. Kim, J. Photochem. Photobiol., A, 351, 139 (2018). https://doi.org/10.1016/j.jphotochem.2017.10.019
  22. Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 19, 604 (2009). https://doi.org/10.1002/adfm.200800940
  23. J. Chen, W. Lei and W. Q. Deng., Nanoscale, 3, 674 (2011). https://doi.org/10.1039/c0nr00591f