• 제목/요약/키워드: Short Term Load Forecasting

검색결과 108건 처리시간 0.022초

기상변수를 고려한 모델에 의한 단기 최대전력수요예측 (Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable)

  • 고희석;이충식;최종규;김주찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.292-294
    • /
    • 2000
  • This paper is presented the method peak load forecast based on multiple regression Model. Forecasting model was composed with the temperature-humidity and the discomfort index. Also the week periodicity was excluded from weekday change coefficient of two types. Forecasting result was good with about 3[%]. And, utility of presented forecast model using statistical tests has been proved. Therefore, This results establish appropriateness and fitness of forecast models using peak power demand forecasting.

  • PDF

A Study on Supplied Forecasting of Short-term Electrical Power using Fuzzy Compensative Algorithm

  • Choo Yeon-Gyu;Lee Kwang-Seok;Kim Hyun-Duck
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.779-783
    • /
    • 2006
  • A The estimation of electrical power consumption is becoming more important to supply stabilized electrical power recently. In this paper, we propose a supplied forecasting system of electrical power using Fuzzy Compensative Algorithm to estimate electrical load accurately than the previous. We evaluate a time series of supplied electrical power have the chaotic character using quantitative and qualitative analysis, compose a forecasting system by the maximum change $rate(\alpha)$ of Fuzzy Algorithm and compensative parameter. Simulating it for obtained time series, we can obtain more accurate results than the previous proposed system.

  • PDF

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.533-538
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한극전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

건물의 단기부하 예측을 위한 기상예측 모델 개발 (Development of Weather Forecast Models for a Short-term Building Load Prediction)

  • 전병기;이경호;김의종
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

다중 시계열 모델을 이용한 단기 부하 무효전력 예측 (Short-term Reactive Power Load Forecasting Using Multiple Time-Series Model)

  • 이효상;조종만;박우현;김진오
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.105-111
    • /
    • 2004
  • 본 논문에서는 실제 전력 수요 데이터를 이용하여 유효전력에 단기 부하 예측함에 있어 무효전력이 중요한 역할을 하는 것을 회귀 분석 검정 통계량으로 증명한다. 무효전력의 공급과 수요는 계통의 전압과 아주 밀접한 관계를 가지고 있으므로 계통전압을 관리하고 계통의 신뢰도를 높이기 위해서는 예측된 무효전력 수요에 따라 무효전력 공급계획을 별도로 수립하여 운영해야 한다. 따라서 본 논문에서는 다중 시계열 모델을 이용한 시전 예측방법을 이용하여 설명변수로 유효전력을 사용하여 부하의 무효전력을 예측 하였다.

u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측 (Short-term Power Load Forecasting using Time Pattern for u-City Application)

  • 박성승;손호선;이동규;지은미;김희석;류근호
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.177-181
    • /
    • 2009
  • u-City 활용을 위한 u-공공시설의 개발은 첨단 건축기술과 유비쿼터스 컴퓨팅의 통합으로 새로운 형식의 공간계획과 공공시설물을 내외부에 설치하기 위해 건물의 기반 서비스 시설인 냉난방, 공조, 조명 그리고 전력 관련 시설들의 기반이 구축되어야 한다. 따라서 이 논문에서는 이러한 기반 서비스를 위한 가장 기본적인 것 중 하나인 단기 전력 시스템의 수요와 공급 문제를 해결하기 위하여 시계열 분석을 적용한 시간 패턴 분석을 통해 전력 수요 예측 기술을 제안한다. 시간 패턴 분석을 위해 SOM 알고리즘과 k-means 기법을 적용하여 요일별, 시간별 데이터를 군집화하고 그 자료를 이용하여 시간 패턴 분석 방법인 지수평활기법과 ARIMA 모형을 비교 분석하였다. 제안 시스템 성능 평가 결과 지수평활기법 보다 ARIMA 모형을 적용한 시스템이 더 좋은 결과를 보였다. 따라서, 이러한 전력 부하 예측 결과를 이용하여 전력 공급의 수요에 따른 계획이나 시스템 운영을 효과적으로 할 수 있다.

  • PDF

뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;최재균;왕보현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델 (Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding)

  • 김광호;장병훈;최황규
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.852-857
    • /
    • 2019
  • 분산자원 집합 거래시장에 참여를 원하는 소비자나 사업자를 위한 가상발전소의 전력거래 플랫폼에서 사업참여자의 수요 자원을 관리하고, 이에 적절한 전략을 제공하기 위해 익일 개별 참여자의 수요와 전체 계통의 전력수요를 예측하는 것이 대단히 중요하다. 이러한 전력거래 플랫폼에서 활용하는 것을 목표로 본 논문은 우선 익일의 24시간 전력계통 전력수요예측 모델을 개발하였다. 본 논문에서는 전력수요예측 데이터의 시계열 특성을 고려하여 딥러닝 기법 중 LSTM 알고리즘을 사용하였고, 전력수요량 등의 입출력 값에 원-핫 인코딩 기법을 적용하는 새로운 시도를 하였다. 성능평가에서 일반 DNN과 본 논문에서 구현된 LSTM 예측모델은 각각 평균 제곱근 오차 4.50, 1.89를 나타내어 LSTM 모델이 예측정확도가 높게 나타났다.

P-e 곡선의 타원특성을 고려한 전력계통의 최대 허용부하의 예측 (Estimation of Maximum Loadability in Power Systems By Using Elliptic Properties of P-e curve)

  • 김범식;문영현;권용준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.347-349
    • /
    • 2005
  • This paper presents an efficient algorithm to estimate the maximum load level for heavily loaded power systems with the load-generation variation vector obtained by ELD (Economic Load Dispatch) and/or short term load forecasting while utilizing the elliptic pattern of the P-e curve. It is well known the power flow equation in the rectangular coordinate is fully quadratic. However, the coupling between e and f makes it difficult to take advantage of this quadratic characteristic. In this paper, a simple technique is proposed to reflect the e-f coupling effects on the estimation of maximum loadability with theoretical analysis. An efficient estimation algorithm has been developed with the use of the elliptic properties of the P-e curve. The proposed algorithm is tested on IEEE 14 bus system, New England 39 bus system and IEEE 118 bus system, which shows that the maximum load level can be efficiently estimated with remarkable improvement in accuracy.

  • PDF

P-e 곡선의 타원 특성을 이용한 전력계통 최대허용부하의 예측 (Estimation of Maximum Loadability in Power Systems By Using Elliptic Properties of P-e Curve)

  • 문영현;최병곤;조병훈;이태식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.22-30
    • /
    • 1999
  • This paper presents an efficient algorithm to estimate the maximum load level for heavily loaded power systems with the load-generation vector obtained by ELD (Economic Load Dispach) and/or short term load forecasting while utilizing the elliptic pattern of the P-e curve. It is well known the power flow equation in the rectangular corrdinate is jully quadratic. However, the coupling between e and f makes it difficult to take advantage of this quadratic characteristic. In this paper, the elliptic characteristics of P-e curve are illustrated and a simple technique is proposed to reflect the e-f coupling effects on the estimation of maximum loadability with theoretical analysis. An efficient estimation algorithm has been developed with the use of the elliptic properties of the P-e curve. The proposed algorithm is tested on IEEE 14 bus system, New England 39 bus system and IEEE 118 bus system, which shows that the maximum load level can be efficiently estimated with remarkable improvement in accuracy.

  • PDF