• Title/Summary/Keyword: Shooting Distance

Search Result 62, Processing Time 0.027 seconds

A Study on the Detection of Small Arm Rifle Sound Using the Signal Modelling Method (신호 모델링 기법을 이용한 소총화기 신호 검출에 대한 연구)

  • Shin, Mincheol;Park, Kyusik
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.443-451
    • /
    • 2015
  • This paper proposes a signal modelling method that can effectively detect the shock wave(SW) sound and muzzle blast(MB) sound from the gunshot of a small arm rifle. In order to localize a counter sniper in battlefield, an accurate detection of both shock wave sound and muzzle blast sound are the necessary keys in estimating the direction and the distance of the counter sniper. To verify the performance of the proposed algorithm, a real gunshot sound in a domestic military shooting range was recorded and analyzed. From the experimental results, the proposed signal modelling method was found to be superior to the comparative system more than 20% in a shock wave detection and 5% in a muzzle blast detection, respectively.

Development of Optical Sighting System for Moving Target Tracking

  • Jeung, Bo-Sun;Lim, Sung-Soo;Lee, Dong-Hee
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.154-163
    • /
    • 2019
  • In this study, we developed an optical sighting system capable of shooting at a long-distance target by operating a digital gyro mirror composed of a gyro sensor and an FSM. The optical sighting system consists of a reticle part, a digital gyro mirror (FSM), a parallax correction lens, a reticle-ray reflection mirror, and a partial reflection window. In order to obtain the optimal volume and to calculate the leading angle range according to the driving angle of the FSM, a calculation program using Euler rotation angles and a three-dimensional reflection matrix was developed. With this program we have confirmed that the horizontal leading angle of the developed optical sighting system can be implemented under about ${\pm}8^{\circ}$ for the maximum horizontal driving angle (${\beta}={\pm}12.5^{\circ}$) of the current FSM. Also, if the ${\beta}$ horizontal driving angle of the FSM is under about ${\pm}15.5^{\circ}$, it can be confirmed that the horizontal direction leading angle can be under ${\pm}10.0^{\circ}$. If diagonal leading angles are allowed, we confirmed that we can achieve a diagonal leading angle of ${\pm}10.0^{\circ}$ with a vertical driving angle ${\alpha}$ of ${\pm}7.1^{\circ}$ and horizontal driving angle ${\beta}$ of ${\pm}12.5^{\circ}$.

Use of GIS for Prioritization and Site Suitability Analysis of Potential Relocation Sites for Military Training Facilities: A Case Study in South Korea

  • Yum, Sang-Guk;Park, Young-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.195-206
    • /
    • 2022
  • The primary purpose of this study was to analyze assessment factors by identifying and prioritizing live fire shooting area requirements using the AHP (Analytic Hierarchy Process) technique. Derived assessment factors for candidate sites were divided into six categories. Of these, four categories (base-to-range distance, weapon danger area, range terrain, and size) were in the realm of physical geography while the remaining two (land use and proximity to habitation) fell under the general heading of human geography. A case study was also conducted to select several alternative firing ranges using derived factors. The optimal location was analyzed by evaluating the candidate site using each assessment factor. As a result, it was found that assessment factors applying to GIS (Geographic Information System) were able to effectively analyze a suitable location for relocation of the focal training facility, taking into consideration public-safety issues, training requirements, and residents' past and likely future complaints. Through this process, it can prevent the waste of time and effort in determining an optimal location for a live fire shooing range.

The Bullet Launcher with A Pneumatic System to Detect Objects by Unique Markers

  • Jasmine Aulia;Zahrah Radila;Zaenal Afif Azhary;Aulia M. T. Nasution;Detak Yan Pratama;Katherin Indriawati;Iyon Titok Sugiarto;Wildan Panji Tresna
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.252-260
    • /
    • 2023
  • A bullet launcher can be developed as a smart instrument, especially for use in the military section, that can track, identify, detect, mark, lock, and shoot a target by implementing an image-processing system. In this research, the application of object recognition system, laser encoding as a unique marker, 2-dimensional movement, and pneumatic as a shooter has been studied intensively. The results showed that object recognition system could detect various colors, patterns, sizes, and laser blinking. Measuring the average error value of the object distance by using the camera is ±4, ±5, and ±6% for circle, square and triangle form respectively. Meanwhile, the average accuracy of shots on objects is 95.24% and 85.71% in indoor and outdoor conditions respectively. Here, the average prototype response time is 1.11 s. Moreover, the highest accuracy rate of shooting results at 50 cm was obtained 98.32%.

A Study on Applicability of Smartphone Camera and Lens for Concrete Crack Measurement Using Image Processing Techniques (이미지 처리기법을 이용한 균열 측정시 스마트폰 카메라 및 렌즈 적용성에 대한 연구)

  • Seo, Seunghwan;Kim, Dong-Hyun;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • Recently, high-resolution cameras in smartphones enable measurement of minute objects such as cracks in concrete using image processing techniques. The technology to investigate the crack width using an application at an adjacent distance of the close shot range has already been implemented, but the use is limited, so it is necessary to verify the usability of the high-resolution smartphone camera to measure cracks at a longer distance. This study focuses on recognizing the size of subdivided crack widths at a thickness within 1.0 mm of crack width at a distance of 2 m. In recent Android-based smartphones, an experiment was conducted focusing on the relationship between the unit pixel size, which is a measurement component, and the shooting distance, depending on the camera resolution. As a result, it was possible to confirm the necessity of a smartphone lens for the classification and quantification of microcrack widths of 0.3 mm to 1mm. The universal telecentric lens for smartphones needed to be installed in an accurate position to minimize the effect of distortion. In addition, as a result of applying a 64 MP high-resolution smartphone camera and double magnification lens, the crack width could be calculated within 2 m in pixel units, and crack widths of 0.3, 0.5, and 1mm could be distinguished.

Development of Android-Based Photogrammetric Unmanned Aerial Vehicle System (안드로이드 기반 무인항공 사진측량 시스템 개발)

  • Park, Jinwoo;Shin, Dongyoon;Choi, Chuluong;Jeong, Hohyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • Normally, aero photography using UAV uses about 430 MHz bandwidth radio frequency (RF) modem and navigates and remotely controls through the connection between UAV and ground control system. When using the exhausting method, it has communication range of 1-2 km with frequent cross line and since wireless communication sends information using radio wave as a carrier, it has 10 mW of signal strength limitation which gave restraints on life my distance communication. The purpose of research is to use communication technologies such as long-term evolution (LTE) of smart camera, Bluetooth, Wi-Fi and other communication modules and cameras that can transfer data to design and develop automatic shooting system that acquires images to UAV at the necessary locations. We conclude that the android based UAV filming and communication module system can not only film images with just one smart camera but also connects UAV system and ground control system together and also able to obtain real-time 3D location information and 3D position information using UAV system, GPS, a gyroscope, an accelerometer, and magnetic measuring sensor which will allow us to use real-time position of the UAV and correction work through aerial triangulation.

Estimation of the Original Location of Haechi (Haetae) Statues in Front of Gwanghwamun Gate Using Archival Photos from Early 1900s and Newly Taken Photos by Image Analysis (1900년대 초반의 기록사진과 디지털 카메라 사진분석을 활용한 광화문 앞 해치상의 원위치 추정)

  • Oh, Hyundok;Nam, Ho Hyun;Yoo, Yeongsik;Kim, Jung Gon;Kang, Kitaek;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.491-504
    • /
    • 2021
  • Gwanghwamun Gate of Gyeongbokgung Palace was dismantled and relocated during the Japanese colonial period, destroyed during the Korean War, reconstructed with reinforced concrete in 1968, and finally erected at its present location in 2010. A pair of Haechi statues located in front of Gwanghwamun was dismantled and relocated several times, and the statues have yet to be returned precisely to their original positions. This study assesses the historical accuracy of their current placement under the Gwanghwamun Square Restructuring Project of the Seoul Metropolitan Government and the Cultural Heritage Administration based on archival photos from the early 1900s, and proposes a method to estimate the original positions of the Haechi through image analysis of contemporary photographs and recent digital camera photos. We estimated the original position of the Haechi before the Japanese colonial period by identifying the shooting location of the archival photo and reproducing contemporary photographs by calculating the angle and distance to the Haechi from the shooting location. The leftmost and rightmost Haechi were originally located about 9.6 m to the east and 7.4 m to the north and about 1.9 m to the west and 8.0 m to the north, respectively, of their current location indicators. As the first attempt to determine the original location of a building and its accessories using archival photos, this study launches a new scientific methodology for the restoration of cultural properties.

Development of Surface Velocity Measurement Technique without Reference Points Using UAV Image (드론 정사영상을 이용한 무참조점 표면유속 산정 기법 개발)

  • Lee, Jun Hyeong;Yoon, Byung Man;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.22-31
    • /
    • 2021
  • Surface image velocimetry (SIV) is a noncontact velocimetry technique based on images. Recently, studies have been conducted on surface velocity measurements using drones to measure a wide range of velocities and discharges. However, when measuring the surface velocity using a drone, reference points must be included in the image for image correction and the calculation of the ground sample distance, which limits the flight altitude and shooting area of the drone. A technique for calculating the surface velocity that does not require reference points must be developed to maximize spatial freedom, which is the advantage of velocity measurements using drone images. In this study, a technique for calculating the surface velocity that uses only the drone position and the specifications of the drone-mounted camera, without reference points, was developed. To verify the developed surface velocity calculation technique, surface velocities were calculated at the Andong River Experiment Center and then measured with a FlowTracker. The surface velocities measured by conventional SIV using reference points and those calculated by the developed SIV method without reference points were compared. The results confirmed an average difference of approximately 4.70% from the velocity obtained by the conventional SIV and approximately 4.60% from the velocity measured by FlowTracker. The proposed technique can accurately measure the surface velocity using a drone regardless of the flight altitude, shooting area, and analysis area.

A Study on Subjective Noise Evaluation of School Area on Aircraft Noise near Airport (공항주변학교의 항공기 소음의 피해의식에 관한 연구)

  • Kim, Gap-Su;Hwang, Jeong-Hun;Bae, Eun-Hye
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • In this study, damages due to the aircraft noise were examined in more than 190 elementary, middle and high schools near the airports in Korea, and the persecutory idea forecast model was established using the quantification theory type II. Via the survey of 1,012 teachers in the schools, a class interference forecast model was established, and the noise characteristics of five areas, four military/civil common-use airports and one shooting range, were examined. The following conclusions were made from the study. WECPNL values in the five military/civil common-use airports showed that all of them were Class 1 or 2 affected areas, which indicated that they had serious aircraft noise problems to be addressed. The most influential factor in the aircraft noise persecutory idea model was the distance between the airport and the school. It showed a positive relationship at a distance of less than 5 km, and a negative relationship at a distance of 10 km or more. The number and time of aircraft noise exposure as well as the types of airports and window structures had strong influences. The forecast model had a correlation ratio of 0.56, which indicates that it is highly appropriate. In the class interference factor analysis, the time and number of aircraft noise exposure were strong influential factors, and the results varied according to the service duration and sex of teachers. This model had a correlation ratio of 0.61, which indicates it is highly appropriate.

A Single Camera System Equipped Convex Mirror for Monitoring Tracer Bullet to Teach Night Firing Exercises (볼록거울을 장착한 야간 사격훈련용 예광탄 탄도 모니터링 단일 카메라 시스템)

  • Lee, In Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.757-762
    • /
    • 2012
  • In general, an ordinary CCTV camera has equipped with 24 frames per second. This camera is not capable of capturing an image of bullet trace which has speed about 1km per second. In spite of these difficulties, by means of the stereographical projection, a long distance trace is able to be contained in one image. Currently, to capture a series of image of an object with high speed, it is usual to use one of the complicated camera with high shutter speed or computerized devices with capability of controlling shutter timing with slightly different capture time. This paper proposed a monitoring tracer bullet single camera system equipped convex mirror trying to see whether or not a normal set of camera and convex mirror is capable of shooting on target located in as far as 250m.