• Title/Summary/Keyword: Shoot blight

Search Result 44, Processing Time 0.025 seconds

Occurrence of black shoot blight in apple and pear trees in Korea

  • Mi-Hyun Lee;Yong Hwan Lee;Seong Chan Lee;Hyo-Won Choi;Mi-Suk Yang;Jae Sun Moon;Suk-Yoon Kwon;Jun Myoung Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.723-734
    • /
    • 2023
  • Erwinia pyrifoliae, which causes black shoot blight in apple and pear trees, was first identified in Korea in 1995. Extensive measures are typically used to control the disease by eradicating trees in diagnosed orchards, owing to the detrimental impact of the disease on apple and pear production. However, despite governmental efforts, the disease has continuously spread. In this study, we analyzed the current status of the black shoot blight occurrence in apple and pear orchards between 1995 to 2022. Our findings reveal that over the past 28 years, black shoot blight has occurred in 26 cities and districts across five Korean provinces. The affected regions are predominantly concentrated in the northern part of Korea, including the Gangwon and Gyeonggi provinces. Furthermore, black shoot blight has gradually expanded to the northern provincial regions of Chungbuk, Chungnam, and Gyeongbuk, which are centrally situated in Korea. Furthermore, the occurrence pattern of black shoot blight differed between apple and pear orchards; in apple orchards, black shoot blight occurred consistently each year, with a sudden increase in cases in 2020; however, in pear orchards, it has considerably decreased since 2007. To the best of our knowledge, this is the first comprehensive report on the occurrence of black shoot blight in apple and pear trees in 28 years, and the results will provide valuable insights for future disease management strategies.

Studies on Mulberry Shoot Rot caused by Fusarium spp. (Fusarium spp. 균에 의한 뽕나무신소썩음병에 관한 연구)

  • 윤형주;김영택;진경식;박인균;양성열
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.86-91
    • /
    • 1995
  • Isolation and pathogenicity of Fusarium spp. from mulberry shoot rot and severity of diseases which were known as bacterial blight were examined on four mulberry varieties in Suwon, Kongju and Chuncheon, A symptom of mulberry shoot rot was initiated long brown spot on young leaves and shoots. It was developed into dark brown spot and produced white mycelia and spores on the diseased symptoms. A symptom of bacterial blight showed leaf rolling and water soaking spot and produced bacterial ooze on leaf and shoot However later stage of upper two types of symptom was hardly distinguished. Severities of shoot rot and bacterial blight were 7.5% and 4.4% in Suwon, respectively. Isolation of Fusarium spp. on shoot rot symptoms was highter than that on bacterial blight symptoms, but isolation of Pseudomonas spp. was higher on bacterial blight symptoms. Trends of pathogenicity of Fusarium spp. and Pseudomonas spp. were similar to inoculation works, and isolations of pathogenic Fusarium spp. from center of symptom was higher than that from 30cm of symptom of all samples in three cultivation areas. Disease severities of shoot rot on variety of Kaeryangppong were 13.9%, 15.9% and 17.2% in Suwon, Kongju and Chuncheon, respectively. However variety of Cheongolppong was highly resistant to shoot rot disease in three cultivation areas.

  • PDF

Development of an Improved Loop-Mediated Isothermal Amplification Assay for On-Site Diagnosis of Fire Blight in Apple and Pear

  • Shin, Doo-San;Heo, Gwang-Il;Son, Soo-Hyeong;Oh, Chang-Sik;Lee, Young-Kee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • Fast and accurate diagnosis is needed to eradicate and manage economically important and invasive diseases like fire blight. Loop-mediated isothermal amplification (LAMP) is known as the best on-site diagnostic, because it is fast, highly specific to a target, and less sensitive to inhibitors in samples. In this study, LAMP assay that gives more consistent results for on-site diagnosis of fire blight than the previous developed LAMP assays was developed. Primers for new LAMP assay (named as DS-LAMP) were designed from a histidine-tRNA ligase gene (EAMY_RS32025) of E. amylovora CFBP1430 genome. The DS-LAMP amplified DNA (positive detection) only from genomic DNA of E. amylovora strains, not from either E. pyrifoliae (causing black shoot blight) or from Pseudomonas syringae pv. syringae (causing shoot blight on apple trees). The detection limit of DS-LAMP was 10 cells per LAMP reaction, equivalent to $10^4$ cells per ml of the sample extract. DS-LAMP successfully diagnosed the pathogens on four fire-blight infected apple and pear orchards. In addition, it could distinguish black shoot blight from fire blight. The $B{\ddot{u}}hlmann$-LAMP, developed previously for on-site diagnosis of fire blight, did not give consistent results for specificity to E. amylovora and on-site diagnosis; it gave positive reactions to three strains of E. pyrifoliae and two strains of P. syringae pv. syringae. It also, gave positive reactions to some healthy sample extracts. DS-LAMP, developed in this study, would give more accurate on-site diagnosis of fire blight, especially in the Republic of Korea, where fire blight and black shoot blight coexist.

Bacterial Shoot Blight of Apple Caused by Pseudomonas syringae (Pseudomonas syringae에 의한 사과나무 가지마름병의 발생)

  • 서상태;원선영;박덕환;김영숙;허장현;임춘근
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Bacterial blight occurred on the flowers, leaves, twigs and branches of apple trees (Malus domestica Borkh) in Chunchon, Kangwon-Do. Infected flowers and leaves turned brownish black, and they were fallen down or remained hanging in the trees. Under humid conditions during postblossom period, the casual bacterium spreaded along twigs and killed them. However, killing of branches was very rare. The symptoms on apple trees were very similar to symptoms of fire blight. But the causal organism isolated from the lesions was identified as Pseudomonas syringae based on physiological and chemical characteristics. This is the first described bacterium that causes apple shoot blight in Korea.

  • PDF

Survey of Major Diseases Occurred on Apple in Northern Gyeongbuk from 2013 to 2014 (2013-2014년도 경북 북부지역 사과 주요 병해 발생조사)

  • Cheon, Wonsu;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • During the period from 2013 to 2014, disease occurrences by various pathogens in apple cultivars have been investigated in northern Gyeongbuk province of Korea. Anthracnose, white rot, Alternaria leaf spot, Marssonina blotch, and bacterial shoot blight as major diseases have been observed. Pathogens isolated from the symptomatic plants were identified as Colletotrichum gloeosporioides for anthracnose, Botryosphaeria dothidea for white rot, Alternaria alternata for Alternaria leaf spot, Marssonina mali for Marssonina blotch, and Pseudomonas syringae pv. syringae for bacterial shoot blight. Of all diseases, the bacterial shoot blight has been severely increased in chronically infested fields in Gyeongbuk province.

Erwinia pyrifoliae, a Causal Endemic Pathogen of Shoot Blight of Asian Pear Tree in Korea

  • Shrestha, Rosemary;Koo, Jun-Hak;Park, Duck-Hwan;Hwang, In-Gyu;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.294-300
    • /
    • 2003
  • Bacterial strains were isolated from diseased samples of shoot blight collected from different pear growing orchards of Chuncheon, Korea from 1995 to 1998. Forty-nine strains showed their pathogenicity on immature fruit and shoot of pear. Microbiological, physiological, and biochemical tests were performed on these pathogenic strains. One strain, designated as WT3 in this study, was selected as a representative strain as it was collected from the first outbreak area in Jichonri, Chuncheon in 1995. Further detailed characterization of the strain WT3 was done by PCR amplification using specific primers described previously for distinguishing Erwinia pyrifoliae from its close pathogen Erwinia amylovora. Based on phenotypical, biochemical, and molecular analyses, strain WT3 was identified as a shoot blight pathogen which was the same as E. pyrifoliae Ep16 previously described by a German group in 1999.

Development of the Droplet Digital PCR Method for the Detection and Quantification of Erwinia pyrifoliae

  • Lin, He;Seong Hwan, Kim;Jun Myoung, Yu
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.141-148
    • /
    • 2023
  • Black shoot blight disease caused by Erwinia pyrifoliae has serious impacts on quality and yield in pear production in Korea; therefore, rapid and accurate methods for its detection are needed. However, traditional detection methods require a great deal of time and fail to achieve absolute quantification. In the present study, we developed a droplet digital polymerase chain reaction (ddPCR) method for the detection and absolute quantification of E. pyrifoliae using a pair of species-specific primers. The detection range was 103-107 copies/ml (DNA templates) and cfu/ml (cell culture templates). This new method exhibited good linearity and repeatability and was validated by absolute quantification of E. pyrifoliae DNA copies from samples of artificially inoculated immature pear fruits. Here, we present the first study of ddPCR assay for the detection and quantification of E. pyrifoliae. This method has potential applications in epidemiology and for the early prediction of black shoot blight outbreaks.

Discrimination and Detection of Erwinia amylovora and Erwinia pyrifoliae with a Single Primer Set

  • Ham, Hyeonheui;Kim, Kyongnim;Yang, Suin;Kong, Hyun Gi;Lee, Mi-Hyun;Jin, Yong Ju;Park, Dong Suk
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.

On-Site Diagnosis of Fire Blight with Antibody-Based Diagnostic Strips (항혈청 기반 진단 스트립을 이용한 과수 화상병 현장진단)

  • Heo, Gwang-Il;Shin, Doo-San;Son, Soo-Hyeong;Oh, Chang-Sik;Park, Duck Hwan;Lee, Young-Kee;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.306-313
    • /
    • 2017
  • Recently fire blight occurred in the Republic of Korea and eradication program for the disease has been executed since then. Specificity and detection sensitivity of the 2 antibody-based diagnostic strips to Korean isolates of Erwinia amylovora (Ea) and their application for on-site diagnosis were evaluated in this study. Ea AgriStrip, a commercial diagnostic kit, and EB strip, developed in this study, reacted positively to the all tested Korean Ea strains and also to most of Erwinia pyrifoliae (Ep) strains causing black shoot blight. They reacted negatively to all Pusedomonas syringae pv. syringae (Pss) strains that cause shoot blight on apple. Detection sensitivity was similar between the 2 strips. For on-site diagnosis, the two strips reacted positively only to the extractions of the fire-blighted samples on all fire blight occurred orchards except one orchard at which on-site diagnosis was carried out at winter time. In addition, they reacted positively to the black-shoot blighted extractions from the black shoot blight occurred apple orchard. These results suggest that both EB strip and Ea AgriStrip would be useful for on-site diagnosis of fire blight in Korea.

Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

  • Choi, Jeong Ho;Kim, Jong-Yea;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.355-365
    • /
    • 2022
  • Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.