DOI QR코드

DOI QR Code

Development of the Droplet Digital PCR Method for the Detection and Quantification of Erwinia pyrifoliae

  • Lin, He (Department of Applied Biology, Chungnam National University) ;
  • Seong Hwan, Kim (Department of Microbiology, Dankook University) ;
  • Jun Myoung, Yu (Department of Applied Biology, Chungnam National University)
  • Received : 2022.08.23
  • Accepted : 2023.01.10
  • Published : 2023.02.01

Abstract

Black shoot blight disease caused by Erwinia pyrifoliae has serious impacts on quality and yield in pear production in Korea; therefore, rapid and accurate methods for its detection are needed. However, traditional detection methods require a great deal of time and fail to achieve absolute quantification. In the present study, we developed a droplet digital polymerase chain reaction (ddPCR) method for the detection and absolute quantification of E. pyrifoliae using a pair of species-specific primers. The detection range was 103-107 copies/ml (DNA templates) and cfu/ml (cell culture templates). This new method exhibited good linearity and repeatability and was validated by absolute quantification of E. pyrifoliae DNA copies from samples of artificially inoculated immature pear fruits. Here, we present the first study of ddPCR assay for the detection and quantification of E. pyrifoliae. This method has potential applications in epidemiology and for the early prediction of black shoot blight outbreaks.

Keywords

Acknowledgement

We thank Dr. Sunghoon Jung for the use of laboratory equipment, and Dr. Mi-Hyun Lee for providing E. amylovora genomic DNA. This project was supported by the Animal and Plant Quarantine Agency (PQ20204B026), Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

References

  1. Cao, Y., Yu, M., Dong, G., Chen, B. and Zhang, B. 2020. Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules 25:706. https://doi.org/10.3390/molecules25030706
  2. Chai, A.-L., Ben, H.-Y., Guo, W.-T., Shi, Y.-X., Xie, X.-W., Li, L. and Li, B.-J. 2020. Quantification of viable cells of Pseudomonas syringae pv. tomato in tomato seed using propidium monoazide and a real-time pcr assay. Plant Dis. 104:2225-2232. https://doi.org/10.1094/pdis-11-19-2397-re
  3. Chaudhari, N. M., Gupta, V. K. and Dutta, C. 2016. BPGA: an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373.
  4. Dinu, L.-D. and Bach, S. 2013. Detection of viable but nonculturable Escherichia coli O157:H7 from vegetable samples using quantitative PCR with propidium monoazide and immunological assays. Food Control 31:268-273. https://doi.org/10.1016/j.foodcont.2012.10.020
  5. Dreo, T., Pirc, M., Ramsak, Z., Pavsic, J., Milavec, M., Zel, J. and Gruden, K. 2014. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal. Bioanal. Chem. 406:6513-6528. https://doi.org/10.1007/s00216-014-8084-1
  6. Du, Y., Wang, M., Zou, L., Long, M., Yang, Y., Zhang, Y. and Liang, X. 2021. Quantitative detection and monitoring of Colletotrichum siamense in rubber trees using real-time PCR. Plant Dis. 105:2861-2866. https://doi.org/10.1094/PDIS-10-20-2198-RE
  7. Dupas, E., Legendre, B., Olivier, V., Poliakoff, F., Manceau, C. and Cunty, A. 2019. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants. J. Microbiol. Methods 162:86-95. https://doi.org/10.1016/j.mimet.2019.05.010
  8. Floren, C., Wiedemann, I., Brenig, B., Schutz, E. and Beck, J. 2015. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chem. 173:1054-1058. https://doi.org/10.1016/j.foodchem.2014.10.138
  9. Geider, K., Auling, G., Jakovljevic, V. and Volksch, B. 2009. A polyphasic approach assigns the pathogenic Erwinia strains from diseased pear trees in Japan to Erwinia pyrifoliae. Lett. Appl. Microbiol. 48:324-330. https://doi.org/10.1111/j.1472-765X.2008.02535.x
  10. Gutierrez-Aguirre, I., Racki, N., Dreo, T. and Ravnikar, M. 2015. Droplet digital PCR for absolute quantification of pathogens. Methods Mol. Biol. 1302:331-347. https://doi.org/10.1007/978-1-4939-2620-6_24
  11. Han, K. S., Yu, J.-G., Lee, H.-B., Oh, C.-S., Yea, M. C., Lee, J.-H. and Park, D. H. 2016. Controlling by effective pruning of twigs showing black shoot blight disease symptoms in apple trees. Res. Plant Des. 22:269-275 (in Korean). https://doi.org/10.5423/RPD.2016.22.4.269
  12. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., Karlin-Neumann, G. A., Hindson, C. M., Saxonov, S. and Colston, B. W. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83:8604-8610. https://doi.org/10.1021/ac202028g
  13. Huggett, J. F., Foy, C. A., Benes, V., Emslie, K., Garson, J. A., Haynes, R., Hellemans, J., Kubista, M., Mueller, R. D., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., Wittwer, C. T. and Busin, S. A. 2013. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59:892-902. https://doi.org/10.1373/clinchem.2013.206375
  14. Huggett, J. F., Garson, J. A. and Whale, A. S. 2016. Digital PCR and its potential application to microbiology. In: Molecular microbiology: diagnostic principles and practice, eds. by D. H. Persing, F. C. Tenover, R. T. Hayden, M. Ieven, M. B. Miller, F. S. Nolte, Y.-W. Tang and A. van Belkum, 3rd ed., pp. 49-57. ASM Press, Washington, DC, USA.
  15. Jin, Y. J., Kong, H. G., Yang, S. I., Ham, H., Lee, M.-H. and Park, D. S. 2022. Species-specific detection and quantification of Erwinia pyrifoliae in plants by a direct SYBR Green quantitative real-time PCR assay. PhytoFrontiers 2:371-379. https://doi.org/10.1094/PHYTOFR-09-21-0069-R
  16. Kim, W. S., Gardan, L., Rhim, S. L. and Geider, K. 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Bacteriol. 49:899-905. https://doi.org/10.1099/00207713-49-2-899
  17. Kim, W. S., Jock, S., Paulin, J.-P., Rhim, S.-L. and Geider, K. 2001. Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis. 85:1183-1188. https://doi.org/10.1094/pdis.2001.85.11.1183
  18. Lehman, S. M., Kim, W.-S., Castle, A. J. and Svircev, A. M. 2008. Duplex real-time polymerase chain reaction reveals competition between Erwinia amylovora and E. pyrifoliae on pear blossoms. Phytopathology 98:673-679. https://doi.org/10.1094/PHYTO-98-6-0673
  19. Lei, S., Gu, X., Zhong, Q., Duan, L. and Zhou, A. 2020. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell. Food Control 114:107207. https://doi.org/10.1016/j.foodcont.2020.107207
  20. Li, H., Bai, R., Zhao, Z., Tao, L., Ma, M., Ji, Z., Jian, M., Ding, Z., Dai, X., Bao, F. and Liu, A. 2018. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38:BSR20181170. https://doi.org/10.1042/BSR20181170
  21. Luo, L. X., Walters, C., Bolkan, H., Liu, X. L. and Li, J. Q. 2008. Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathol. 57:332-337. https://doi.org/10.1111/j.1365-3059.2007.01736.x
  22. Mock, U., Hauber, I. and Fehse, B. 2016. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat. Protoc. 11:598-615. https://doi.org/10.1038/nprot.2016.027
  23. Pan, H., Dong, K., Rao, L., Zhao, L., Wu, X., Wang, Y. and Liao, X. 2020. Quantitative detection of viable but nonculturable state Escherichia coli O157:H7 by ddPCR combined with propidium monoazide. Food Control 112:107140. https://doi.org/10.1016/j.foodcont.2020.107140
  24. Papic, B., Pate, M., Henigman, U., Zajc, U., Gruntar, I., Biasizzo, M., Ocepek, M. and Kusar, D. 2017. New approaches on quantification of Campylobacter jejuni in poultry samples: the use of digital PCR and real-time PCR against the ISO standard plate count method. Front. Microbiol. 8:331. https://doi.org/10.3389/fmicb.2017.00331
  25. Rhim, S. L., Volksch, B., Gardan, L., Paulin, J. P., Langlotz, C., Kim, W. S. and Geider, K. 1999. Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol. 48:514-520. https://doi.org/10.1046/j.1365-3059.1999.00376.x
  26. Sahu, R., Vishnuraj, M. R., Srinivas, C., Dadimi, B., Megha, G. K., Pollumahanti, N., Malik, S. S., Vaithiyanathan, S., Rawool, D. B. and Barbuddhe, S. B. 2021. Development and comparative evaluation of droplet digital PCR and quantitative PCR for the detection and quantification of Chlamydia psittaci. J. Microbiol. Methods 190:106318. https://doi.org/10.1016/j.mimet.2021.106318
  27. Shin, D.-S., Heo, G.-I., Song, S.-H., Oh, C.-S., Lee, Y.-K. and Cha, J.-S. 2018. Development of an improved loop-mediated isothermal amplification assay for on-site diagnosis of fire blight in apple and pear. Plant Pathol. J. 34:191-198.
  28. Shrestha, R., Koo, J. H., Park, D. H., Hwang, I., Hur, J. H. and Lim, C. K. 2003. Erwinia pyrifoliae, a causal endemic pathogen of shoot blight of Asian pear tree in Korea. Plant Pathol. J. 19:294-300. https://doi.org/10.5423/PPJ.2003.19.6.294
  29. Taylor, S. C., Carbonneau, J., Shelton, D. N. and Boivin, G. 2015. Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: clinical implications for quantification of Oseltamivir-resistant subpopulations. J. Virol. Methods 224:58-66. https://doi.org/10.1016/j.jviromet.2015.08.014
  30. Telli, A. E. and Dogruer, Y. 2019. Discrimination of viable and dead Vibrio parahaemolyticus subjected to low temperatures using propidium monoazide-quantitative loop mediated isothermal amplification (PMA-qLAMP) and PMA-qPCR. Microb. Pathog. 132:109-116. https://doi.org/10.1016/j.micpath.2019.04.029
  31. Voegel, T. M. and Nelson, L. M. 2018. Quantification of Agrobacterium vitis from grapevine nursery stock and vineyard soil using droplet digital PCR. Plant Dis. 102:2136-2141. https://doi.org/10.1094/pdis-02-18-0342-re
  32. Wang, L., Tian, Q., Zhou, P., Zhao, W. and Sun, X. 2022. Evaluation of droplet digital PCR for the detection of black canker disease in tomato. Plant Dis. 106:395-405. https://doi.org/10.1094/PDIS-02-21-0317-RE
  33. Watanabe, M., Kawaguchi, T., Isa, S.-I., Ando, M., Tamiya, A., Kubo, A., Saka, H., Takeo, S., Adachi, H., Tagawa, T., Kakegawa, S., Yamashita, M., Kataoka, K., Ichinose, Y., Takeuchi, Y., Sakamoto, K., Matsumura, A. and Koh, Y. 2015. Ultrasensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFRactivating mutation using droplet digital PCR. Clin. Cancer Res. 21:3552-3560. https://doi.org/10.1158/1078-0432.CCR-14-2151
  34. Wenneker, M. and Bergsma-Vlami, M. 2015. Erwinia pyrifoliae, a new pathogen on strawberry in the Netherlands. J. Berry Res. 5:17-22. https://doi.org/10.3233/jbr-140086
  35. Wensing, A., Gernold, M. and Geider, K. 2012. Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. J. Appl. Microbiol. 112:147-158. https://doi.org/10.1111/j.1365-2672.2011.05165.x
  36. Whale, A. S., Cowen, S., Foy, C. A. and Huggett, J. F. 2013. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS ONE 8:e58177. https://doi.org/10.1371/journal.pone.0058177
  37. Yamazaki, W., Ishibashi, M., Kawahara, R. and Inoue, K. 2008. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol. 8:163. https://doi.org/10.1186/1471-2180-8-163
  38. Yang, R., Paparini, A., Monis, P. and Ryan, U. 2014. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int. J. Parasitol. 44:1105-1113. https://doi.org/10.1016/j.ijpara.2014.08.004
  39. Zhang, L., Wang, M., Cong, D., Ding, S., Cong, R., Yue, J., Geng, J. and Hu, C. 2018. Rapid, specific and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification targeted to vvhA gene. Acta Oceanol. Sin. 37:83-88. https://doi.org/10.1007/s13131-018-1182-8