• 제목/요약/키워드: Shock-tube problem

검색결과 24건 처리시간 0.021초

공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법 (EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

압축성 기-액 이상매체중의 고속 유동현상 (HIGH-SPEED FLOW PHENOMENA IN COMPRESSIBLE GAS-LIQUID TWO-PHASE MEDIA)

  • 신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.249-257
    • /
    • 2007
  • A high resolution numerical method aimed at solving gas-liquid two-phase flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

충격파-와동 간섭에서 발생하는 반사파 및 관통 충격파 (Reflected Wave and Transmitted Shock in the Shock-Vortex Interaction)

  • 장세명;장근식;이수갑
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.139-142
    • /
    • 2002
  • An experimental model and a conceptual model are investigated in this paper with both shock tube experiment and numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

  • PDF

와동에 입사하는 충격파의 반사 및 투과(I) (Shock Reflection and Penetration Impinging into a Vortex (I) - Experimental Model-)

  • 장세명;장근식
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1311-1318
    • /
    • 2002
  • An experimental model is investigated in this paper using the experimental method with a shock tube and the numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

슈퍼 섬유를 활용한 일체형 Shock Energy Absorber Lanyard Protection Tube 제조 및 특성분석 (Characteristic and Development of All-in-one Shock Energy Absorber Lanyard Protection Tube used Super Fibers)

  • 조진원;권상준;김상태;염정현;강지만;지병철
    • 한국염색가공학회지
    • /
    • 제26권2호
    • /
    • pp.106-113
    • /
    • 2014
  • Work-related falls are a major problem in the construction and roofing industries. To avoid serious injury to the worker caused by high decelerations or forces, different systems to absorb the energy of a fall are implemented in personal protective equipment. In this study, shock energy absorber lanyard protection tube was prepared using high tenacity PET fiber, P-aramid fiber, and UHMWPE fiber, respectively. Dynamic load test and static load test, bursting strength test based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) or conformity European safety test(CE : EN355) were conducted. Especially maximum arrest force by dynamic load test of energy absorber showed below 6,000N.

ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석 (Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method)

  • 신상묵;김인철;김용직
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델 (GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW)

  • 신병록
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석 (NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL)

  • 염금수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.