• Title/Summary/Keyword: Shock Resistance

Search Result 439, Processing Time 0.037 seconds

Studies on the effect of thermal shock on crack resistance of 20MnMoNi55 steel using compact tension specimens

  • Thamaraiselvi, K.;Vishnuvardhan, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3112-3121
    • /
    • 2021
  • One of the major factors affecting the life span of a Reactor Pressure Vessel (RPV) is the Pressurised Thermal Shock (PTS). PTS is a thermo-mechanical load on the RPV wall due to steep temperature gradients and structural load created by internal pressure of the fluid within the RPV. Safe operating life of a nuclear power plant is ensured by carrying out fracture analysis of the RPV against thermal shock. Carrying out fracture tests on RPV/large scale components is not always feasible. Hence, studies on laboratory level specimens are necessary to validate and supplement the prototype results. This paper aims to study the fracture behaviour of standard Compact Tension [C(T)] specimens, made of RPV steel 20MnMoNi55, subjected to thermal shock through experimental and numerical investigations. Fracture tests have been carried out on the C(T) specimens subjected to thermal transient load and tensile load to quantify the effect of thermal shock. Crack resistance curves are obtained from the fracture tests as per ASTM E1820 and compared with those obtained numerically using XFEM and a good agreement was found. A quantitative study on the crack tip plastic zone, computed using cohesive segment approach, from the numerical analyses justified the experimental crack initiation toughness.

Isolation Technique of Shock Transfer Path of the Microdrive for Shock Resistance Improvement (마이크로 드라이브의 충격 저감을 위한 충격 전달 경로 절연 기법)

  • Kim, Do-Gyoon;Lee, Jun-Hwa;Kim, Kwang-Joon;Byun, Yong-Kyu;Han, Woo-Sup;Hong, Min-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.717-722
    • /
    • 2003
  • To improve the shock resistance of the microdrive under non-operating conditions, an isolator was attached to the contacting part of the microdrive. Through FE analysis, design parameters for satisfying the allowable acceleration level of the spindle motor bearing part were presented, which is a most possible critical part of the microdrive.

  • PDF

An Experimental Study on Thermal Shock Characteristics for Graphite Materials (그라파이트 재료의 열충격 특성에 대한 실험적 연구)

  • 박노석;김덕회;한영욱;김재훈;이영신;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.164-167
    • /
    • 2003
  • Thermal shock is a physical phenomenon that occurs upon a rapid, large temperature and pressure change or in the quenching condition of materials. In this study, thermal shock fracture resistance and thermal shock fracture toughness were evaluated by using laser irradiation. The temperature distribution of a specimen was detected using type K and C thermocouples. The irradiated surfaces were observed by SEM. It is concluded that the critical laser power necessary to fracture can be the major factor of thermal shock resistance and thermal shock fracture toughness of materials.

  • PDF

Prediction of thermal shock failure of glass during PDP manufacturing process (PDP 제조 공정시 유리의 열충격 파손 예측)

  • 김재현;최병익;이학주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.

Evaluation of the Shock Resistance of a Gas Turbine Package (가스터빈 패키지 내충격 성능평가에 관한 연구)

  • Kim, Jae Boo;Park, Yun Ki;Park, Min Seok;Lee, Jong Hwan;An, Sung Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.1005-1009
    • /
    • 2017
  • In this study, the shock resistance of a gas turbine package subjected to a shock load caused by non-contact underwater explosion was investigated using numerical analysis. To perform shock analysis, the time-history shock load was calculated according to BV-043 (German Navy Regulation). The direct transient response analysis in the time domain for the simplified Whole Engine Model (WEM) was performed using the calculated shock load. In addition, the structural integrity of a detailed model was evaluated by considering the shock load transferred to each component. As a result, it was confirmed that the safety factor was at least 1.0 as compared with the reference stress. Finally, the structural and functional integrity of the Engine Management System (EMS) of the gas turbine package was verified through an actual shock test.

A Study on the strengthening of titania ceramic coating layer on the steel substrate (티타니아 세라믹 熔射皮膜의 强度向上에 관한 硏究)

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.181-189
    • /
    • 1992
  • The purpose of this investigation is to examine the effects of the strengthening treatments on the mechanical properties of the flame-sprayed titania ceramic coating layer. The strengthening treatments for flame sprayed specimens were carried out in 12 different conditions in vaccum furance. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was clear that the mechanical properties of coating layer were much improved by the strengthening treatments. The results obtained are summarized as follows; 1. It was shown that the metallurgical bond was formed between substrate and coating layer by the strengthening treatments and that thermal shock resistance and adhesive strength were remarkably raised. 2. Microhardness of coating lay was considerably increased by the strengthening treatments. 3. Erosion resistance and porosity of coating layer were slightly improved by the strengthening treatments.

  • PDF

Reliability of Various Underfills on BGA package (BGA 패키지에서의 다양한 언더필의 신뢰성 평가)

  • No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.31-33
    • /
    • 2005
  • In this study, the interfacial reactions and electrical properties of the Sn-35(wt%)Pb-2(wt%)Ag/Cu BGA solder joints after the thermal shock test were investigated with three different kinds of the underfill used commercially. The microstructural evolutions of the solder joints were observed using a scanning electron microscopy (SEM) and the electrical resistance of the solder joints were evaluated with the numbers of thermal shock cycle using the four-prove method. The increase in the $Cu_{6}Sn_{5}$ IMC thickness led to the increase in the electrical resistance with increasing the numbers of the thermal shock cycle. The increase in the electrical resistance of the BGA packages with the underfill was smaller than that without the underfill. The silica contained underfill led to the higher electrical resistance.

  • PDF

Resistance to Hypoosmotic Shock of Liposomes Containing Novel Pigments from an Antarctic Bacterium

  • Correa-Llanten, Daniela N.;Amenabar, Maximiliano J.;Blamey, Jenny M.
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • Although the antioxidant capacity of carotenoids and their role in regulating membrane fluidity have been well studied, their ability to confer resistance to hypoosmotic shock is poorly understood. In this work, we analyzed the effect of a mixture of carotenoid pigments obtained from an Antarctic microorganism belonging to the genus Pedobacter on liposomal resistance to hypoosmotic conditions. Intercalation of pigments into liposomal structures resulted in an improvement of membrane resistance by decreasing the percentage of calcein released in comparison to that by liposomes without pigments. Due to these properties, such pigments could be useful for biotechnological applications.

Probabllistic and Shock Analysis of Head-gimbal Assembly in Micro MO Drives (초소형 광자기 드라이브용 HGA의 신뢰성 및 충격 해석)

  • Oh Woo-Seok;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Hong Eo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1347-1353
    • /
    • 2004
  • With respect to the researches of the optical flying head(OFH) , the head-gimbal assembly should be analyzed to guarantee the stable fabrication and the characteristics of shock resistance. The suitable design is proved through the Probabilistic analysis of the design parameters and material properties of the model. Probabilistic analysis is a technique that be used to assess the effect of uncertain input parameters and assumptions on your analysis model. Using a probabilistic analysis you can find out how much the results of a finite elements analysis are affected by uncertainties in the model. Another factor is analysis of the dynamic shock analysis. For the mobile application, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes in contact with outer shock disturbance. the system gets critical damage in head-gimbal assembly or disk. This paper describes probabilistic and dynamic shock analysis of head-gimbal assembly in micro MO drives using OFH slider.