Browse > Article
http://dx.doi.org/10.4014/kjmb.1205.05018

Resistance to Hypoosmotic Shock of Liposomes Containing Novel Pigments from an Antarctic Bacterium  

Correa-Llanten, Daniela N. (Scientific and Cultural Bioscience Foundation)
Amenabar, Maximiliano J. (Scientific and Cultural Bioscience Foundation)
Blamey, Jenny M. (Scientific and Cultural Bioscience Foundation)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.3, 2012 , pp. 215-219 More about this Journal
Abstract
Although the antioxidant capacity of carotenoids and their role in regulating membrane fluidity have been well studied, their ability to confer resistance to hypoosmotic shock is poorly understood. In this work, we analyzed the effect of a mixture of carotenoid pigments obtained from an Antarctic microorganism belonging to the genus Pedobacter on liposomal resistance to hypoosmotic conditions. Intercalation of pigments into liposomal structures resulted in an improvement of membrane resistance by decreasing the percentage of calcein released in comparison to that by liposomes without pigments. Due to these properties, such pigments could be useful for biotechnological applications.
Keywords
Hypoosmotic shock; liposomes; carotenoids; calcein; Antarctica;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Becker-Hapak, M., E. Troxtel, J. Hoerter, and A. Eisenstark. 1997. RpoS dependent overexpression of carotenoids from Erwinia herbicola in OXYR-deficient Escherichia coli. Biochem. Biophys. Res. Commun. 239: 305-309.   DOI   ScienceOn
2 Bramely, P. M. and A. Mackenzie. 1988. Regulation of carotenoid biosynthesis. Curr. Top. Cell. Regul. 29: 291-343.
3 Chattopadhyay, M. K., M. V. Jagannadham, M. Vairamani, and S. Shivaji. 1997. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239: 85-90.   DOI   ScienceOn
4 Chintalapati, S., M. D. Kiran, and I. S. Shiva. 2004. Role of membrane lipid fatty acids in cold adaptation. Cell. Mol. Biol. 50: 631-642.
5 Correa-Llanten, D. N., M. J. Amenabar, and J. M. Blamey. 2012. Antioxidant capacity of novel pigments from an Antarctic bacterium. J. Microbiol. 50: 374-379.   DOI
6 Finean, J. B. 1990. Interaction between cholesterol and phospholipid in hydrated bilayers. Chem. Phys. Lipids 54: 147-156.   DOI   ScienceOn
7 Fong, N. J., M. L. Burgess, K. D. Barrow, and D. R. Glenn. 2001. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 56: 750-756.   DOI
8 Gabrielska, J. L. and W. I. Gruszecki. 1996. Zeaxanthin (dihydroxy-${\beta}$-carotene) but not ${\beta}$-carotene rigidifies lipid membranes: a $^1H$-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim. Biophys. Acta 1285: 167-174.   DOI   ScienceOn
9 Gruszecki, W. I. and K. Strzayka. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta 1740: 108-115.   DOI   ScienceOn
10 Jagannadham, M. V., M. K. Chattopadhyay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C. M. Rao, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol. 173: 418-424.   DOI   ScienceOn
11 Jagannadham, M. V., V. J. Rao, and S. Shivaji. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J. Bacteriol. 173: 7911-7917.
12 Kuboi, R., T. Shimanouchi, H. Umakohsi, and M. Yoshimoto. 2004. Detection of protein conformation under stress conditions using liposomes as sensor materials. Sens. Mater. 16: 241-254.
13 Ourrison, G. and Y. Nakatani. 1994. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1: 11-23.   DOI   ScienceOn
14 Ourrison, G., M. Rohmer, and K. Poralla. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41: 301-333.   DOI   ScienceOn
15 Sandmann, G. 2001. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4-12.   DOI   ScienceOn
16 Shivaji, S., M. K. Ray, N. Shyamala Rao, L. Saisree, M. V. Jagannadham, G. Seshu Kumar, G. S. N. Reddy, and P. M. Bhargava. 1992. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int. J. Syst. Bacteriol. 42: 102-106.   DOI
17 Siefirmann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 69: 501-568.
18 Subczynski, W. K., E. Markowska, W. I. Gruszecki, and J. Sielewiesiuk. 1992. Effect of polar carotenoids on dimyristoylphosphatidylcholine: A spin-label study. Biochim. Biophys. Acta 1105: 97-108.   DOI   ScienceOn
19 Subczynski, W. K., E. Markowska, and J. Sielewiesiuk. 1993. Spin-label studies on phosphatidylcholine-polar carotenoid membranes: Effects of alkyl chain length and unsaturation. Biochim. Biophys. Acta 1150: 173-181.   DOI   ScienceOn
20 Subczynski, W. K. and A. Wisniewska. 2000. Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol. 47: 613-625.
21 Wisniewska, A. and W. K. Subczynski. 1998. Effect of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim. Biophys. Acta 1368: 235-246.   DOI   ScienceOn
22 Wisniewska, A., J. Widomska, and W. K. Subczynski. 2006. Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim. Pol. 53: 475-484.