DOI QR코드

DOI QR Code

Resistance to Hypoosmotic Shock of Liposomes Containing Novel Pigments from an Antarctic Bacterium

  • Correa-Llanten, Daniela N. (Scientific and Cultural Bioscience Foundation) ;
  • Amenabar, Maximiliano J. (Scientific and Cultural Bioscience Foundation) ;
  • Blamey, Jenny M. (Scientific and Cultural Bioscience Foundation)
  • Received : 2012.05.15
  • Accepted : 2012.07.23
  • Published : 2012.09.28

Abstract

Although the antioxidant capacity of carotenoids and their role in regulating membrane fluidity have been well studied, their ability to confer resistance to hypoosmotic shock is poorly understood. In this work, we analyzed the effect of a mixture of carotenoid pigments obtained from an Antarctic microorganism belonging to the genus Pedobacter on liposomal resistance to hypoosmotic conditions. Intercalation of pigments into liposomal structures resulted in an improvement of membrane resistance by decreasing the percentage of calcein released in comparison to that by liposomes without pigments. Due to these properties, such pigments could be useful for biotechnological applications.

Keywords

References

  1. Becker-Hapak, M., E. Troxtel, J. Hoerter, and A. Eisenstark. 1997. RpoS dependent overexpression of carotenoids from Erwinia herbicola in OXYR-deficient Escherichia coli. Biochem. Biophys. Res. Commun. 239: 305-309. https://doi.org/10.1006/bbrc.1997.7469
  2. Bramely, P. M. and A. Mackenzie. 1988. Regulation of carotenoid biosynthesis. Curr. Top. Cell. Regul. 29: 291-343.
  3. Chattopadhyay, M. K., M. V. Jagannadham, M. Vairamani, and S. Shivaji. 1997. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239: 85-90. https://doi.org/10.1006/bbrc.1997.7433
  4. Chintalapati, S., M. D. Kiran, and I. S. Shiva. 2004. Role of membrane lipid fatty acids in cold adaptation. Cell. Mol. Biol. 50: 631-642.
  5. Correa-Llanten, D. N., M. J. Amenabar, and J. M. Blamey. 2012. Antioxidant capacity of novel pigments from an Antarctic bacterium. J. Microbiol. 50: 374-379. https://doi.org/10.1007/s12275-012-2029-1
  6. Finean, J. B. 1990. Interaction between cholesterol and phospholipid in hydrated bilayers. Chem. Phys. Lipids 54: 147-156. https://doi.org/10.1016/0009-3084(90)90008-F
  7. Fong, N. J., M. L. Burgess, K. D. Barrow, and D. R. Glenn. 2001. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 56: 750-756. https://doi.org/10.1007/s002530100739
  8. Gabrielska, J. L. and W. I. Gruszecki. 1996. Zeaxanthin (dihydroxy-${\beta}$-carotene) but not ${\beta}$-carotene rigidifies lipid membranes: a $^1H$-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim. Biophys. Acta 1285: 167-174. https://doi.org/10.1016/S0005-2736(96)00152-6
  9. Gruszecki, W. I. and K. Strzayka. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta 1740: 108-115. https://doi.org/10.1016/j.bbadis.2004.11.015
  10. Jagannadham, M. V., M. K. Chattopadhyay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C. M. Rao, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol. 173: 418-424. https://doi.org/10.1007/s002030000163
  11. Jagannadham, M. V., V. J. Rao, and S. Shivaji. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J. Bacteriol. 173: 7911-7917.
  12. Kuboi, R., T. Shimanouchi, H. Umakohsi, and M. Yoshimoto. 2004. Detection of protein conformation under stress conditions using liposomes as sensor materials. Sens. Mater. 16: 241-254.
  13. Ourrison, G. and Y. Nakatani. 1994. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1: 11-23. https://doi.org/10.1016/1074-5521(94)90036-1
  14. Ourrison, G., M. Rohmer, and K. Poralla. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41: 301-333. https://doi.org/10.1146/annurev.mi.41.100187.001505
  15. Sandmann, G. 2001. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4-12. https://doi.org/10.1006/abbi.2000.2170
  16. Shivaji, S., M. K. Ray, N. Shyamala Rao, L. Saisree, M. V. Jagannadham, G. Seshu Kumar, G. S. N. Reddy, and P. M. Bhargava. 1992. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int. J. Syst. Bacteriol. 42: 102-106. https://doi.org/10.1099/00207713-42-1-102
  17. Siefirmann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 69: 501-568.
  18. Subczynski, W. K., E. Markowska, W. I. Gruszecki, and J. Sielewiesiuk. 1992. Effect of polar carotenoids on dimyristoylphosphatidylcholine: A spin-label study. Biochim. Biophys. Acta 1105: 97-108. https://doi.org/10.1016/0005-2736(92)90167-K
  19. Subczynski, W. K., E. Markowska, and J. Sielewiesiuk. 1993. Spin-label studies on phosphatidylcholine-polar carotenoid membranes: Effects of alkyl chain length and unsaturation. Biochim. Biophys. Acta 1150: 173-181. https://doi.org/10.1016/0005-2736(93)90087-G
  20. Subczynski, W. K. and A. Wisniewska. 2000. Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol. 47: 613-625.
  21. Wisniewska, A. and W. K. Subczynski. 1998. Effect of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim. Biophys. Acta 1368: 235-246. https://doi.org/10.1016/S0005-2736(97)00182-X
  22. Wisniewska, A., J. Widomska, and W. K. Subczynski. 2006. Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim. Pol. 53: 475-484.

Cited by

  1. Isolation of a Psychrotolerant and UV-C-Resistant Bacterium from Elephant Island, Antarctica with a Highly Thermoactive and Thermostable Catalase vol.8, pp.1, 2020, https://doi.org/10.3390/microorganisms8010095
  2. Pigments from Antarctic bacteria and their biotechnological applications vol.41, pp.6, 2012, https://doi.org/10.1080/07388551.2021.1888068