• Title/Summary/Keyword: Shock Resistance

Search Result 439, Processing Time 0.027 seconds

Shock Resistance Analysis of a Propulsion Motor for Naval Vessels (함정용 추진전동기의 내충격성 해석)

  • Bae, Sung-Wook;Hong, Chin-Suk;Jeong, Weui-Bong;Park, Young-Su;Bin, Jae-Goo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1183-1189
    • /
    • 2010
  • Shock-resistance test for a real equipment for a normal vessel is one of the difficult problem in many cases because of terrible cost and weight. An analysis technique to evaluate the shock resistance in a design stage is necessary, instead In this paper, the process to evaluate the shock resistance of a propulsion motor for naval vessels was presented based on German navy's BV043 regulation. The shock signal to impose the equipment under the test was first evaluated, and was then applied to the structural FE model of the equipment. From the transient FEA, the time history of von-Mises stress was obtained by the mode superposition method. The shock resistance was evaluated using the peak value of the von-Mises stress.

Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets (TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.

Study on the characteristics of acid resistance and thermal shock for epoxy coatings (에폭시계 코팅재의 내산열충격 특성에 관한 연구)

  • Lee, Sang-Yeal;Yun, Byoung-Du
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.362-369
    • /
    • 2007
  • This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.

Analysis for Driving Shock Resistance of Military Vehicle (군용 차량 주행 내충격 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Jeong, Eui-Bong;Kang, Kwang-Hee;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF

Analysis of Thermal Shock in Tool Steels for Hot Forging (열간단조 금형강의 열충격특성연구)

  • Kim, J.W.;Kim, B.J.;Jo, I.S.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.155-159
    • /
    • 2001
  • The thermal shock resistance has been investigated and compared in three hot-work tool steels. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. In this study, new test method is proposed to measure the thermal shock resistance. New method is basically based on Uddeholm' thermal shock test but some modification has been properly applied. Based on these results, some critical temperature($T_{fractures}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. The specific values of ${\Delta}T$, the temperature difference between holding temperature and $T_{fractures}$, has been successfully used as a measure of the thermal shock resistance in this study, the results showed that the thermal shock method used in this study was properly modified.

  • PDF

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres (중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구)

  • Yomin, Choi;Hyun‐Gyoo, Shin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

Evaluation of thermal shock resistance and thermal shock fracture toughness using $CO_2$ laser for ATJ graphite (ATJ 그라파이트의 $CO_2$ 레이저를 이용한 열충격 강도 및 열충격 파괴인성 평가)

  • Kim, Jae-Hoon;Lee, Young-Sin;Park, No-Seok;Kim, Duk-Hoi;Han, Young-Wook;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to evaluate thermal shock resistance and thermal shock fracture toughness for ATJ graphite. Thermal shock resistance and thermal shock fracture toughness of ATJ graphite are evaluated by using CO$_2$ laser irradiation technique. The laser heat source is irradiated at the center of specimens. Temperature distribution on the specimen surface is measured using the thermocouples of type K and C. SEM and radiographic images are used to observe the cracks which are formed at the thermal shock specimens.

  • PDF

Hazard Assessment by Electric Shock both on the Ground and in the Water (지상과 수중에서 전격에 의한 위험성 평가)

  • Kim, Doo-Hyun;Kang, Dong-Kyu;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.26-33
    • /
    • 2004
  • This study presents a hazard assessment of the human body exposed to electic shock considering various parameters which affect severity of the electric shock. The present study has two research objectives; one is no analyze hazards of the human body by the elctric shock both on the ground and in the water. The other is to understand the mechnism of the electric shock. In order to achieve these objectives the hazard of shock is estimated by comparing with physiological effects of electric curren througn the human body according to variation of shock parameters of shock circuits. The shock parameters adopted in this paper consist of body resistance, resistance of protective equipment, ground resistance, shock duration, depth of gound surface layer, relection factor, permissible touch voltage, body current and body voltage. Besides, safety standard determining hazard degree of the human body is introduced. And hazard of the human body due to the electric shock is quantitatibely assessed in consideration of data obtained by the method suggested herein, and final results are presented and discussed.

Measurement and Estimation of Dynamic Resistance of the Human Body Using Body Current at Low-Voltage Levels (저전압에서의 통전전류를 이용한 인체의 동저항 측정 및 예측)

  • 김두현;강동규;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • The severity of electric shock is entirely dependent on body resistance. When the human body becomes a part of electric circuit, the body resistance is given as a function of shock scenario. Factors which consist of applied voltage, shock duration, body current path and contact area, etc.. The body resistance is defined as the voltage applied to subjects divided by the body current. To secure safety of the subjects, the experiment is conducted on 10 subjects, the body current is limited to 4mA. And only three factors under many shock scenario conditions are used to determine the body resistance. The three factors are the applied voltage, the current pathway and the contact area. The object of this work is to estimate the dynamic resistance of the human body as a function of applied voltage using the body current at low-voltage levels. The data of the body current at low-voltage levels are extrapolated to high-voltage levels using two analytic functions with specified constants calculated by numerical method. Also we can provide permissible body voltage for various copper electrodes on the basis of the data determined with the dynamic resistance and the body current.

  • PDF

A Study on Assessment Method of Crack Resistance and Thermal Shock Resistance in Hardfacing for Hot Forging Die (열간단조 금형 육성용접부 내균열성 및 내열충격성 평가방법에 관한 연구)

  • Cho, Sang-Myung;Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byong-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Hardfacing is one of the frequently applying method to increase surface hardness in hot forging die. Recently, hardfacing receives great attention due to it's repair availability and low cost. In hot forging die, crack resistance and thermal shock resistance have been considered as major properties, However there are few studies for the assessment of these properties. So, it is necessary to establish the assessment method for crack resistance and thermal shock resistance in hardfacing for hot forging die. In this study, flux cored arc welding was applied to make hardfacing welds. Three point bending test was carried out to assess hardfacing weld's crack resistance, and high temperature bending test using salt bath was developed for thermal shock resistance. Consequently, it was possible to assess crack resistance and thermal shock resistance of hardfacing welds for hot forging die quantitatively.