DOI QR코드

DOI QR Code

중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres

  • 최요민 (한국산업기술시험원 재료기술센터) ;
  • 신현규 (한국산업기술시험원 재료기술센터)
  • Yomin, Choi (Material Technology Center, Korea Testing Laboratory) ;
  • Hyun‐Gyoo, Shin (Material Technology Center, Korea Testing Laboratory)
  • 투고 : 2022.11.07
  • 심사 : 2022.11.11
  • 발행 : 2022.12.28

초록

The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22NANO-B156177-03).

참고문헌

  1. F. Chen, S. Cheng, G. Zhang, S. Chen and R. Yang: J. Mater. Civ. Eng., 33 (2021) 04021124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003739
  2. A. L. Brooks, H. Zhou and D. Hanna: Constr. Build. Mater., 159 (2018) 316. https://doi.org/10.1016/j.conbuildmat.2017.10.102
  3. S. Shahidan, E. Aminuddin, K. M. Noor, N. I. R. R. Hannan and N. A. S. Bahari: MATEC Web Conf., 103 (2017) 01014103514.
  4. N. Kabay, A. Kizilkanat, B. Akturk and Y. Kahraman: Tech. J. Turk. Chamb. Civ. Eng. 33 (2022).
  5. K. J. Krakowiak, R. G. Nannapaneni, A. Moshiri, T. Phatak, D. Stefaniuk, L. Sadowski and M. J. A. Qomi: Cem. Concr. Compos., 108 (2020) 103514. https://doi.org/10.1016/j.cemconcomp.2020.103514
  6. F. Aslani, L. Wang and M. Zheng: J. Compos. Mater., 53 (2019) 2447. https://doi.org/10.1177/0021998319827078
  7. R. Ahmada, J.-H. Ha and I.-H. Song: J. Powder Mater., 21 (2014) 389. https://doi.org/10.4150/KPMI.2014.21.5.389
  8. P. Xiao, Z. Yifeng, W. Peng and L. Dan: Appl. Therm. Eng., 161 (2019) 114191. https://doi.org/10.1016/j.applthermaleng.2019.114191
  9. H. Zhu, N. Thong-On and X. Zhang: Waste Manage. Res., 20 (2002) 407. https://doi.org/10.1177/0734242X0202000504
  10. T. Sugama and T. Pyatina: Mater., 15 (2022) 6328. https://doi.org/10.3390/ma15186328
  11. B. Dillinger, D. Clark, C. Suchicital and G. Wicks: Ceram. Eng. Sci. Proc., 38 (2018).
  12. C. M. Martin, N. B. Scarponi, Y. A. Villagran, D. G. Manzanal and T. M. Pique: Cem. Concr. Compos., 118 (2021) 103981. https://doi.org/10.1016/j.cemconcomp.2021.103981
  13. J.-Y. Wang, M.-H. Zhang, W. Li, K.-S. Chia and R. J. Y. Liew: Cem. Concr. Res., 42 (2012) 721. https://doi.org/10.1016/j.cemconres.2012.02.010
  14. N. Lee, Y. Jeong, H. Kang and J. Moon: Mater., 13 (2020) 2950. https://doi.org/10.3390/ma13132950