• Title/Summary/Keyword: Ships Safety

Search Result 1,202, Processing Time 0.022 seconds

A Study on Traffic Safety Assessments for Fishing Vessels Near the Southwest Sea Offshore Wind Farm

  • Yoo, Sang-Lok;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.231-241
    • /
    • 2017
  • The purpose of this study was to analyze traffic safety assessments for fishing vessels near the southwest offshore wind farm. This study applied a collision model for safety assessment. It also involved a spatiotemporal analysis of vessels engaged in fishing to identify fishing hotspots around the offshore wind farm. This study used data from fishing vessel location transmission devices gathered over 1 year in 2014. As a result, in September, when the average number of vessels engaged in fishing is high, 62 ships were operating in fishing section 184-6 and 55 ships in section 184-6. In addition, in fishing sections 184-8 and 192-2, where an offshore wind farm was located, there were 55 and 38 ships operating, respectively. As the recovery period for a seaway near wind farm turbines is 55 years, it was determined that safety measures are required in order to reduce collision frequency while allowing fishing vessels to navigate through offshore wind farms. Meanwhile, the return period of Seaway B between the groups of generators considered was 184 years. A safety zone for offshore wind farms should be installed covering a distance of at least 0.3 NM from the boundary of turbines. Then, the collision return period was derived to be close to 100 years. Through this traffic safety assessment, it has been concluded that such measures would help prevent marine accidents.

On the Evaluation of Seakeeping Performance in consideration of nominal speed loss ships in a seaway (선박의 속도저하를 고려한 냉항성능 평가에 관한 연구)

  • 김순갑;공길영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • This paper intends to evaluate the seakeeping performance in consideration of nominal speed loss of ships in a seaway. Authors calculate the nominal speed loss in the Sea State of Beaufort Scale 6, 7 & 8 and obtain each response amplitude of ship;s motion by New Strip Method in consideration of them. This study presents some results of the seakeeping performance by the maximum dangerouseness of ships on each sea state.

  • PDF

A Study on the effectiveness of Maritime Traffic Safety Audit Scheme through Case Analysis (해상교통안전진단 사례분석을 통한 진단제도의 효과분석에 관한 연구)

  • Song, Tae-Han;KIM, Young-Du
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.193-201
    • /
    • 2018
  • The recent increase in size and speed of ships resulted in the existing maritime routes becoming narrow relative to the size of new ships. At the same time, as the improvement and optimization in marine transportation take place and the construction of structures in seas and harbor improvements pick up speed, there is an increasing probability of marine accidents. Due to these environmental changes, the need to professionally analyze the effect of marine structures on navigation arose to ensure safety of ships and a law was enacted and introduced for the Maritime Traffic Safety Audit (MTSA). In this study, a Qualitative assessment for verifying the effectiveness of MTSA was carried out with case analysis and analysis model in other similar audit scheme. It is expected that an analyzed result for effectiveness of MTSA will be a steppingstone for enhancing the MTSA and keeping maritime traffic safety as its own purpose.

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

Exploring Plans to Improve the Onboard Training Management for Fisheries High School (수산계고등학교 승선실습 운영 개선 방안 탐색)

  • PARK, Jong-Un;KANG, Beodeul;LEE, Ki-Tae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1404-1412
    • /
    • 2015
  • This study aimed at exploring, based on the current states and status of onboard training ship, plans to improve the boarding training management for fisheries high school. The results were as follows. The problems with the management of onboard training ship were summarized as the following four types. Firstly, The most training ships throughout the country became superannuated. Secondly, the safe equipments for training ships were necessary to compensate the defects to fall short of the international safety management standards. Thirdly, the problems could result from the dualized system between ownership and management, since training ships were owned by metropolitan and provincial education offices and operated by management centered schools. Fourthly, middle technicians such as professional fisheries manpower were not easily supplied with. The plans to improve the above problems were as in the following. Firstly, support and help of Ministry of Maritime Affairs and Fisheries were needed to launch new onboard training ships which substitute for the superannuated. Secondly, new onboard ships were required to be launched according to the updated international safety management standards. Thirdly, Korea Institute of Maritime and Fisheries Technology should hold onboard training. Fourthly, on-site onboard training expertise, systemic management, safety, etc. should be compensated through industry-university-institute collaboration.

Characteristics of Ship's Traffic Route in Yeosu·Gwangyang Port (여수·광양항 출입항로 통항 특성)

  • KIM, Dae-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.539-549
    • /
    • 2016
  • This study analyzed ship's passing characteristics in relation with incoming and outgoing routes in Yeosu Gwangyang Port, and examined the risk factors and measures for safety management of marine traffic. The number of passing ships in Yeosu Gwangyang Port was about 60,000 ships annually based on 2014, and the tonnage rose 73% from 447,000 thousand tons in 2005 to 770,000 thousand tons in 2014. Actually, the number of large passing ships was revealed to enormously increase. As a result of marine traffic survey in Yeosu Gwangyang Port for three days in August 2015, daily average passing ships were 408 ships, and 77% of the total passing ships passed between 04:00 and 20:00. The chemical ships and general cargo ships took up the most at 58% of the total incoming and outgoing ships, followed by other work ships at 21%, tankers at 8%, fishing vessels at 7.5% and container ships at 5.5%. Concerning the size of passing ships, ships less than 1,000 tons accounted for 58.6% of the total passing ships. Ships of 1,000-5,000 tons were 20.1%, and those of 5,000-10,000 tons were 6.8%, and more than 10,000 tons were 14.4%. Especially, ships of 500 tons and less using mainly coastal passing routes took up 49% of the total passing ships. As for ship's passage ratio by route, Nakpo sea area where many routes meet accounted for 27.2%, specified area 49%, costal route 8%, specified area's incoming and outgoing sea area around Daedo 4.5%, and Dolsan coastal ara and Kumhodo sea area 8.5%. The number of ships standing by for anchoring in the six designated anchorages was 230 for three days. The standby rate for anchoring was 25% based on the specified area passing ships. In Nakpo sea area, where many routes meet, parallel passing and cross passing between ships occurred the most frequently. In the specified area, many cases, in which incoming and outgoing cargo ships at the starting and ending parts and incoming and outgoing work ships and fishing vessels at the coastal routes cross, took place. Consequently, the following measures are urgently needed: active passing management in the Nakpo sea area, where passing routes are complex, specified areas and costal traffic routes, the elimination of rocks in the route close to Myodo, an effort to improve routes including shallow depth area dredging, and rational safety management for small work ships frequently incoming and outgoing the passing routes of large ships, and fishing vessels operated in the sea areas around those passing routes.

A Simulation Study on the Improvement of the Entrance Channel of Inchon Harbour (인천항 출입항로 개선 방안에 관한 시뮬레이션 연구)

  • Kim, Whan-Soo;Chung, Se-Mo;Hugh, Il;Lee, Deok-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.11-33
    • /
    • 1996
  • This work aims at examining the navigational safety of the entrance channel of Inchon harbour and suggesting the way to improve ship's navigation of the navigational safety at Inchon, that small ships such as fishing boats and barges coming out of the harbour through the East Channel cause major threat to the inbound large ships using the channel. An additional new waterway, therefore, has been recommended to be established in the middle of the East and West Channels so that the outbound small ships can use it. A waterway design simulation methodology has been applied to examin the sagety of the newly suggested channel. Minor chansge has been made to the original design after the simulation experiment, and the corrected final design of the waterway has been suggested to be implemented as soon as possible.

  • PDF

A Study on the Life Risk Assessment of Ship's Engine Room Fire (기관실화재 인명위험성평가에 관한 연구)

  • Han, Sang-Kook;Cho, Dae-Hwan;Park, Chan-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.283-289
    • /
    • 2006
  • This study is a preparation for the application of FSA (Formal Safety Assessment) to the fire safety of ships. FSA is the new-fashioned methodology proposed to prevent ships from the accidents. To make a base of the fire safety assessment about ship's fire protection design and Classification Society rule, statistical informations for the fire safety engineering are investigated. From results, the necessity of new criterion for ship's fire safety design, the need to study the human behavior in the evacuation from fire, and the development of new fire progress model considering special situations in ships are acknowledged.

  • PDF

An Analysis for Irregularity of Tropospheric Delay due to Local Weather Change Effects on Network RTK (지역적 기상 차이에 의한 대류권 지연 변칙이 네트워크 RTK 환경에 미치는 영향 분석)

  • Han, Younghoon;Shin, Mi Young;Ko, Jaeyoung;Cho, Deuk Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1690-1696
    • /
    • 2014
  • Network RTK generates spatial corrections by using differenced measurements from reference stations in the network, and the corrections are then provided to a rover. The rover, generally, uses linear interpolation, which assumes that the corrections at each reference station are spatially correlated, to obtain a precise correction of its location. However, an irregularity of the tropospheric delay is a real-world factor that violates this assumption. Tropospheric delay is a result of weather conditions, such as humidity, temperature and pressure, and it can cause spatial decorrelation when there are changes in the local climate. In this paper, we have defined the non-linear characteristics of the tropospheric delay between reference stations or user within a region as the "irregularity of tropospheric delay". Such an irregularity can negatively impact the network RTK performance. Therefore, we analyze the influence of the irregularity of tropospheric delay in network RTK based on meteorological data.