• Title/Summary/Keyword: Ship system

Search Result 4,023, Processing Time 0.04 seconds

A Study on the Relationship of Ship Automation System and Safety (선박운항시스템 자동화와 안전의 연관성에 관한 연구)

  • Kim, Bi-A;Lee, Jae-Sik;Oh, Jin-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.69-73
    • /
    • 2007
  • The recent huge maritime casualties and their environmental impacts showed that human error in ship navigation is one of the primary causes leading to accidents. In order to reduce maritime accidents and human errors in ship navigation, it is very important and urgent to improve the skills of navigators and develop advanced navigation support system for ship operations. For example, a SCMS(Ship Control and Management System), INS(Integrated Navigation System) and PCS(propulsion Control System) which are considered as a ship automation system was operated in ship. Furthermore, the most recent automation ships collision incidents warn us that only making automation ships alone is not sufficient for improving ship safety. Effective interaction between officer and ship automation system is essential for safety. In this paper, the interactive relationship between officer and the ship automation system was studied, then the research result for reducing maritime casualties will be presented.

Automated Ship Reporting System in the Context of e-navigation

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.423-429
    • /
    • 2022
  • Ship reporting systems are used to exchange information between ship and shore. To realize the digital ship reporting concept, the International Maritime Organization (IMO) recently developed revised guidelines and descriptions of Maritime Service for ship reporting systems in the context of e-navigation. To improve the existing ship reporting system, each Administration should follow the IMO guidelines for ship reporting system. The purpose of this paper is to identify follow-up measures to be taken by the Korean Government as a member State according to the recently developed IMO guidelines in the context of e-navigation, and to present the considerations for the implementation of follow-up measures in Korea. In this study, a ship reporting system in Korea was investigated to identify the considerations for the digital ship reporting system. Consequently, a digital reporting system and digital traffic clearance were proposed and considerations for ship reporting system are presented. This paper is expected to be helpful for the safe operation of ships by presenting the considerations necessary for the implementation of an automated and standardized ship reporting system.

Development of Hull Thickness Management System for Ship Management System (선박 유지보수를 위한 선체 두께 관리 시스템 개발)

  • Park, Kaemyoung;Lee, Jeong-youl;Lee, Kyungho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.

A Design and Implementation of a Simulation System for Autonomous Navigation of Intelligent Ship (지능형 선박의 자율운항제어를 위한 시뮬레이션 시스템의 설계 및 구현)

  • Lee, Won-Ho;Kim, Chang-Min;Choi, Joong-Lak;Kang, Il-Kweon;Kim, Yong-Gi
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.403-410
    • /
    • 2003
  • ANS (autonomous navigation system) is an expert system which builds navigation plans, understands the current environment, and controls a surface ship. The most ideal way to test ANS is available after it is installed into a real surface ship. however, it is impossible to implement into a real ship. since it costs too much to develop the hardware interfaces just for testing. The most appropriate way for testing is to develop a simulation system for a surface ship and apply it. A simulation system for a surface ship consists of two sub-systems : one is a ship movement simulation system to imitate the physical movement characteristics of the ship, and the other is an environmental objects simulation system to build up surroundings of the ship. In this paper, we design and develop a surface ship movement simulation system which imitates its physical movement characteristics by using a motion equation for surface ship.

Control System for Ship Collision Avoidance considering the Effect of Wind and Ship's Manoeuvrability

  • Im, Nam-Kyun;Lee, Seung-Keon;Hwang, Seong-Joon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.

The method for the development of digital-ship (디지털 선박의 구현방안)

  • 박종원;임용곤;전동욱;배진호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.745-748
    • /
    • 2001
  • Digital-ship is the next-generation ship with an one-man bridge system which consists of INS(Intelligent Navigation System), AIS(Automatic Identification System), and IMIT(Integrated Maritime Information Technology). INS implements the functions is related of the ship's navigation, and supports in the digital GIS environments optimal route planning, stranding and a collision avoidance among the ship, an economic navigation, and an integrated control of ship's engine. AIS prevents the ship's collision by means of transmitting periodically the own ship's information to the other ship or the shore control center. IMIT systems supports the integrated fiat-form in ships, the communication between a ship and a control center of the land using the INMARSAT, OrbComm, Ocean Observation Satellite, and etc. The satellite communication in ships can monitor the ship at an earth control renter. This paper deals with the method for system implementation of digital-ship and the detailed sub-system.

  • PDF

Design and Implementation of Ship Application System for Maritime Service Utilizing onboard Ship Collected Data (선내 수집데이터를 활용하는 선박 및 육상 서비스를 위한 선박용 어플리케이션 시스템 설계 및 구현)

  • Kang, Nam-seon;Kim, Yong-dea;Kim, Sang-yong;Lee, Bum-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.116-126
    • /
    • 2016
  • In this study, has designed the ship application system for efficient data integration management of onboard ship and shore application/service utilizing data collected onboard ship, and has implemented the module. In order to supports onboard ship and shore service utilizing onboard ship collected data and provide a easy to access among individual devices, the ship application system applied the XML structure of ISO 16425 and the data sharing system model discussed in IALA, and the common module for system operation, a windows service for data collection/integral management, and web service module for management has been implemented.

A study on ship motion control system design for developing autonomous system: Experimental study (자율운항시스템 개발을 위한 선박운동제어에 관한 연구 : 실험적 연구)

  • KIM, Kyong-Hyon;SUH, Jin-Ho;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, a ship motion control system design method is introduced for autonomous ships. Some related research results and technologies for autonomous ships have already been developed and applied to testing ships. Recently, the Norwegian Maritime Authority and the Coastal Administration have signed an agreement and started to test autonomous ships in the defined area. Considering recent technology trends and background, in this paper, the authors also try to develop autonomous ship control technologies. In the designed control system, an observer is introduced to estimate unmeasurable system states. Based on the servosystem with state estimator, ship motion control experiment is performed to evaluate control performance using a model ship in water basin.

Design and Implementation of Integrated Marine Data Networking and Communication System for Training-Research Ship (실습조사선의 종합정보통신망시스템 구축)

  • KIM JAE-DONG;PARK SOO-HAN;KIM HYUNG-JIN;KOH SUNG-WI;JEONG HAE-JONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.24-29
    • /
    • 2004
  • A small, highly-trained crew working on the ship's automation has contributed to the improvement of operation efficiency and the labor environment on board ship. However, at the same time, having a small crew adds more responsibility to the ship's officers to safely operate and manage the ship. Recently, development on the system to concentrate important information being scattered at the various pieces of navigational equipment has been actively studied, using information and computer technology. The purpose of this study is to set up and implement an integrated marine data networking and communication system on the training-research ship. Information relating to navigation, engine and office automation were investigated and analyzed, and implementation methods associated with navigation, engine and the management information system were designed and presented. In addition, the networking system and navigational signal interface unit for the integrated communication system, and the data communication method between the ship and land are also discussed.

  • PDF

An Implementation of an Intelligent Digital Ship (지능형 디지털 선박의 구현방안)

  • Lim, Yong-Kon;Park, Jong-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.554-561
    • /
    • 2008
  • This paper deals with an intelligent digital ship which aims at development to support economic and safe services through an integration into the hierarchically layered digital signals such as ship's navigation, maneuvering and control signal and establishing a one-man bridge system in order to provide a support systems between ship and land station. This paper introduces the results of the mid-term project sponsored from Ministry of Commerce, Industry and Energy which consists of three sub-project such as INS(Intelligent Navigation System), AIS(Automatic Identification System), and IMIT (Integrated Maritime Information Technology). The INS system that can allow ships to navigate economically and safely through the integration and analysis of national data within the ship. AIS is a system that reports automatically on the location of the ship in order to prevent the collision between ships and between the ship and the land. IMIT is a integrated system for providing an efficient and economic support system between ships and the land and a ship-land platform and technologies.