• 제목/요약/키워드: Ship maneuvering in waves

검색결과 25건 처리시간 0.019초

A Study on the Propulsion Performance of KCS in Still Water and Regular Wave

  • Lee, Sang-Min;Jeong, Uh-Cheul;Kim, Dae-Hae
    • 한국항해항만학회지
    • /
    • 제37권1호
    • /
    • pp.63-69
    • /
    • 2013
  • Since most merchant vessels are mainly influenced by the added resistance in an actual sea, they could be navigated more efficiently if this added resistance could be precisely predicted and then effectively reduced. In this paper, we have computed the effective horsepower based on the resistance performance in still water and then calculated the added resistance in regular wave in order to estimate a ship's propulsion performance on a voyage. Firstly, we have performed experiments using a model of KCS in a circulating water channel to estimate the flow characteristics around a container ship and the ship's resistance in still water. Then we have calculated the motion response function in regular wave as well as the values for the increase in resistance, and evaluated the ship's motion performance in waves according to the calculated response function. It was found that the resistance in waves increased because the ship's motion response value became larger as the ship's speed increased in the case of head sea. The effect of the added resistance could be reduced by maneuvering the ship to the encounter angle of $120^{\circ}$ in areas of long wavelengths and to head sea in areas of short wavelengths.

불규칙파중 1점계류 선바의 거동해석에 관한 연구 (A Study on the Motion of a Single Point Moored Ship in Irregular Waves)

  • 이승건;조효제;강동훈
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.55-61
    • /
    • 2003
  • 계류된 선박의 시뮬레이션을 위해 조종방정식을 사용하였고, 파 중의 선박에 가해지는 파강제력은 3차원 특이점 분포법에서 얻어진 주파수 전달함수로부터 시간영역해석법을 적용하였다. 운동을 유발하는 입사파의 주기와 동일한 선형 파강제력과 성분파 주파수의 차이에 기인하는 장주기 표류력을 외력항에 고려하였다. 규칙파와 불규칙 중에서의 선박의 거동을 비교하여 계류 중 선박에 발생할 수 있는 SLEW MOTION에 불규칙파 및 비선형 파강제력이 미치는 영향을 고찰하였다.

풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究) (A Study on the Maneuverability of a Rolling Ship under Wind Forces)

  • 김진안;이승건
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

안벽에 계류된 선박의 비선형 운동응답 (Nonlinear Motion Responses of a Moored Ship beside Quay)

  • 이호영;임춘규;유재문;전인식
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Recent Application of CFD in ship Hydrodynamics

  • Kawamura, Takafumi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.321-326
    • /
    • 2008
  • The engineering use of CFD is recently extending to the prediction of maneuvering characteristics, response to waves, propeller performance, and so on. The focus of the research is shifting to simulation of more complex processes. Typical examples of such processes are bow or stern slamming, green water problem, propeller cavitation, hull-propeller interaction, or drag reduction by bubble injection. Those processes are characterized by keywords such as high nonlinearity, unsteadiness, multiphase flow. In this paper, two new attempts which have been recently made by the author's research grop are presented. One is the prediction of propeller cavitation and its effect to the ship hull. The others is the application to the drag reduction by use of air bubbles.

  • PDF

Recent Application of CFD in Ship Hydrodynamics

  • Kawamura, Takafumi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.321-326
    • /
    • 2008
  • The engineering use of CFD is recently extending to the prediction of maneuvering characteristics, response to waves, propeller performance, and so on. The focus of the research is shifting to simulation of more complex processes. Typical examples of such processes are bow or stern slamming, green water problem, propeller cavitation, hull-propeller interaction, or drag reduction by bubble injection. Those processes are characterized by keywords such as high nonlinearity, unsteadiness, multiphase flow. In this paper, two new attempts which have been recently made by the author's research group are presented. One is the prediction of propeller cavitation and its effect to the ship hull. The other is the application to the drag reduction by use of air bubbles.

  • PDF

선박(船舶)의 파랑중(波浪中) 조종운동(操縱運動)에 있어서 동유체력(動流體力)에 의한 메모리 효과(效果) (A Study on the Memory Effect of the Radiation Forces in the Maneuvering Motion of a Ship)

  • 이승건
    • 대한조선학회논문집
    • /
    • 제29권3호
    • /
    • pp.53-58
    • /
    • 1992
  • 파랑중(波浪中)에서 조종운동(操縱運動)을 하는 선박(船舶)에 있어, 실용적으로 선형(線形) 계산(計算)의 경우 파랑력(波浪力)을 단순한 정상(定常) 변동(變動) 외력(外力)으로 취급하는 수가 많다. 본 논문은 이와같은 경우에 있어서 파랑력에 의한 조종(操縱) 운동(運動)에 있어서의 Memory Effect를 조사하여, 이러한 실용 계산법(計算法)의 타당성(妥當性)을 논하였다. 그 결과를 요약하면 (1) $\omega_e$의 주파수(周波數)로 선체에 작용하는 정상(定常) 파랑력에 의한 Memory Effect도 거의 무시(無視)할 수 있다. (2) 따라서, 파랑중(波浪中)에서 조종 운동을 취급하는 경우, 간이 계산법으로서, 정수(靜水)중에서의 조타(操舵) 응답과 규칙파(規則波)중에서의 선체응답(船體應答)을 계산하여 이 둘을 합(合)하여도 무방하다. 그러나, 이상의 결론(結論)은 선형 운동에 국한(局限)된 것으로서, 실제의 조종 운동은 비선형성(非線形性)이 중요시(重要視)되므로 정상(定常) 파랑(波浪) 외력(外力)에 의한 Memory Effect를 좀더 엄밀(嚴密)하게 고찰(考察)하기 위해서는 비선형(非線形) Impulse Response Function을 구(求)하고 이를 이용하여 파랑력(波浪力)에 의한 Memory Effect를 평가(評價)하여야 할 것이다.

  • PDF

안벽에 계류된 선박에 대한 비선형 운동응답 (Nonlinear Motion Responses for A Moored Ship beside Quay)

  • 이호영;임춘규;유재문;전인식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.172-178
    • /
    • 2003
  • As a typoon gets into harbour, a moored ships shows erratic motions and even mooring line failures is occurred. Such troubles may be caused by harbour resonance phenomena, result in large motion amplitudes at law frequency, which is closed to the natural frequency of the moored ship. The nonlinear motions of a moored ship beside quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from emperical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

  • PDF

Time-domain analysis of nonlinear motion responses and structural loads on ships and offshore structures: development of WISH programs

  • Kim, Yong-Hwan;Kim, Kyong-Hwan;Kim, Jae-Han;Kim, Tae-Young;Seo, Min-Guk;Kim, Yoo-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.37-52
    • /
    • 2011
  • The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.

조타에 의한 선박의 횡요 감소시스템의 개발 (Development of the Rudder Roll Control System of a Vessel in Irregular Waves)

  • 이승건;이경우;황성준;강동훈
    • 한국항해항만학회지
    • /
    • 제29권10호
    • /
    • pp.839-845
    • /
    • 2005
  • 조타에 의해 불규칙파 중 선박의 선수동요 및 횡요를 제어하는 횡요 감소시스템에 관한 연구를 수행하였다. 횡요를 포함한 선박 운동 시뮬레이션을 위해 4-자유도 조종 운동방정식을 사용하였고, 선체에 가해지는 외력으로서 파강제력이 고려되었다. 파강제력은 3차원 특이점 분포법에서 얻어진 주파수 전달함수로부터 시간영역해석법을 적용하였다. 선수동요와 횡요를 제어하는 PD 제어기를 각각 구성하고, 이를 선형 결합하여 횡요 감소 조타 제어기를 구성하였다. 조타 속도 및 타의 종류를 변화시켜 선수동요 및 횡요의 제어효율을 검토하였다.