• Title/Summary/Keyword: Ship calculation

Search Result 541, Processing Time 0.025 seconds

Ship Stability Calculation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Sang-Gab;Lee, Jae-Seok;Ki, Jee-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.248-255
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through the openings and was sunk down to the bottom of sea due to the very rough sea weather on the way of evasion after fishing operation in the Bearing Sea with many crews dead and/or missed. In this study, calculation of ship stability was carried out using KST-SHIP(ship calculation system of KST), considering the effect of flow fluid and fish catch arrangement according to the progress of its sinking accident, and damage stability was analyzed. For this study, intact stability calculation of its accident ship under the full load departure condition and its calculation result were verified by comparing with each other, and intact stability according to displacement from the departure of accident ship just before the accident was calculated and analyzed. Damage stability was calculated according to the progress during sinking accident and also analyzed.

  • PDF

Stability criterion and its calculation for sail-assisted ship

  • Hu, Yihuai;Tang, Juanjuan;Xue, Shuye;Liu, Shewen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Stability criterion and its calculation are the crucial issue in the application of sail-assisted ship. However, there is at present no specific criterion and computational methods for the stability of sail-assisted ship. Based on the stability requirements for seagoing ships, the stability criterion of the sail-assisted ships is suggested in this paper. Furthermore, how to calculate the parameters and determine some specific coefficients for the ship stability calculation, as well as how to redraw stability curve are also discussed in this paper. Finally, to give an illustration, the proposed method is applied on a sail assisted-ship model with comments and recommendations for improvement.

Ship Stability Calculation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 선박 복원성 계산)

  • Lee, Jae-Seok;Chung, Young-Gu;Kim, Jee-Hun;Park, Ji-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.459-468
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sank to the bottom of the Bering Sea. The tragic accident was attributed to rough sea weather after a fishing operation in the Bering Sea, and led to the death or loss of many crewmen. In this study, the ship stability calculation was carried out using KST-SHIP (ship calculation system of KST), considering the free surface effect and fish catch arrangement according to the progress of its sinking accident, and stability after flooding was analyzed. The calculation results obtained using KST-SHIP were verified by comparing them to intact stability calculation sheet of the accident ship under the full load departure condition, and intact stability according to displacement from the departure of accident ship up to the moment of the accident was calculated and analyzed. The stability after flooding was also calculated and analyzed according to the progress during its sinking accident.

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

A numerical study on ship-ship interaction in shallow and restricted waterway

  • Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.920-938
    • /
    • 2015
  • In the present study, a numerical prediction method on the hydrodynamic interaction force and moment between two ships in shallow and restricted waterway is presented. Especially, the present study proposes a methodology to overcome the limitation of the two dimensional perturbation method which is related to the moored-passing ship interaction. The validation study was performed and compared with the experiment, firstly. Afterward, in order to propose a methodology in terms with the moored-passing ship interaction, further studies were performed for the moored-passing ship case with a Reynolds Averaged Navier-Stokes (RANS) calculation which is using OpenFOAM with Arbitrary Coupled Mesh Interface (ACMI) technique and compared with the experiment result. Finally, the present study proposes a guide to apply the two dimensional perturbation method to the moored-passing ship interaction. In addition, it presents a possibility that the RANS calculation with ACMI can applied to the ship-ship interaction without using a overset moving grid technique.

ANALYSIS OF FLOW AROUND SHIP USING UNSTRUCTURED GRID (비정렬 격자를 이용한 선체 주위의 유동 해석)

  • Jun, Jae-Hyoung;Lee, Sang-Eui;Kwon, Jae-Woong;Son, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187-193
    • /
    • 2011
  • In this report, We compared the actual test with the result of pow calculation and Resistance/Self-propulsion of the ship using STAR-CCM+ which is the commercial Reynolds Averaged Navier-Strokes(RANs) Solver. The calculation model was the KRISO Container Ship and 205K Bulk Carrier of Sungdong shipbuilding company. For this calculation, We used Realizable K-Epsilon model for flaw analysis, VOF method for the free surface creation, Moving Reference Frame method for reducing the POW calculation time, and Sliding Mesh method for Self-Propulsion analysis. Calculation of Resistance and Self-Propulsion includes the free-surface. And all calculations in this report were based on unstructured grids.

  • PDF

A Study on Spatial Distributions of Courant Number and Numerical Efficiency of LTS Method in Calculation of Ship Resistance Using Structured and Unstructured Meshes (정렬 및 비정렬 격자를 이용한 선박 저항 계산에서 Courant 수의 공간 분포 및 LTS 기법의 효율성에 관한 연구)

  • Lee, Sang Bong;Paik, Kwang-Jun;Park, Dong Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Numerical simulations of ship resistance have been performed to compare spatial characteristics of Courant number when using structured and unstructured meshes. When Euler scheme was used for time integration, the structured mesh provided a more efficient calculation because the calculation time interval was larger than that of unstructured mesh. The automatic generation of very small meshes in the unstructured mesh was mainly responsible for the limitation of calculation time interval. When local time stepping Euler scheme was applied, however, the ship resistance of unstructured mesh showed a rapid convergence while a slow convergence of ship resistance in structured mesh was caused by the small time interval in bulbous bow.

Calculation of Transverse Vibration of Ship`s Propulsion Shaftings by the Finite Element Method (有限要素法에 의한 推進軸系의 광振動計算에 관한 硏究)

  • Jeon, Hio-Jung;Kim, Hi-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.2-18
    • /
    • 1979
  • Due to increasing ship dimensions and installed propulsive power, resonance frequencies of the propeller shaft system tend to decrease and they can appear in some cases within the operating range of the shaft revolution. For calculation of transverse shaft vibrations, various methods have been proposed but as they are mainly for approximate calculation, no contented results are obtained. For fairly accurate estimation of resonance frequencies in the design stage, one can use transfer matrix method of the finite element method and former is rather prefered in ordinary cases. In this study, the finite element method which is utilized for calculation of the propulsion shaft alignment, is introduced to derive the vibration equation of the ship's propulsion shaftings. The digital computer program is developed to solve the above equation, and the details of preparing the input data are described. The method presented in the underlying report was applied to the shafting of ship which has a lignumvitae bearing to verify its reliability and the results of calculation and those of the measurements on rotating shaft show a good agreement. Calculating methods of exciting of forces and damping forces are also discussed for future work.

  • PDF

A Study on the Calculation of Towing Force for the Disabled Ship and Its Experiments (사고 선박의 예인력 계산 및 실험에 관한 연구)

  • Nam, Taek-Kun;Jung, Chang-Hyun;Kim, Jin-Man;Choi, Hyuek-Jin
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.463-470
    • /
    • 2014
  • In this paper, calculation of towing force required to tow the ship and experiments to verify its appropriacy are discussed. Friction, wind and wave-making resistance of vessel are considered to calculate towing force of specified vessel. Propeller resistance is also reflected and it is assumed that the propellers are locked. Node analysis to estimate additional resistance on towline is applied. Total towing force could be obtained by adding the ship's resistance and towline resistance. Experiments with training ship SAE YU DAL was executed to check the effectiveness of calculation methods and some comparison between experiments and calculation results was also done. From the comparative analysis, we confirmed that towing speed is primary terms in the calculation of towing force and propeller resistance is a major elements of ship's resistance with the increasing of towing speed. We can see that additional resistance induced by yawing of ship during towing have to be considered for total tow resistance.

Calculation of Wave-making Resistance by Guilloton's Method Applied to Slender Ships

  • Chan-Suck,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.4
    • /
    • pp.3-11
    • /
    • 1979
  • This paper deals with Guilloton's method for wave-making resistance calculation. Ship is considered as slender in this paper. Guillotin's method requires a large and fast computer, while mini-computer is good enough for the present method. Present method is practical as well, as prismatic curves along with other principal particulars are requirements for the calculation. Unless the ship is thin, Z-transformation is difficult to carry out, but this can be done smoothly in the present method by considering the flow around the bottom of the ship. As an example of this method, corresponding real hulls of Maruo's least wave-making resistance ship forms are calculated.

  • PDF