• Title/Summary/Keyword: Ship and offshore plant

Search Result 83, Processing Time 0.021 seconds

A Study on Standard Process and Environmental Analysis in Ship Repair Workshop (선박 수리작업장의 표준공정 및 환경 분석에 관한 연구)

  • Jeon, Chang-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.899-908
    • /
    • 2021
  • It is expected that the global market for vessel repair and remodeling will grow up to the scale of about 25 billion dollars by 2023. Korea's shipbuilding industry is leading the world with its international competitiveness in design and production technology. The actual status of vessel repair industry, however, is poor as there are only two or three companies for vessel repair that can deal with large vessels in the area of Gyeongnam. The reason is that civil complaints are filed severely about environmental problems and environment-related regulations are so strict that it is fairly hard to get governmental approval for the operation of a vessel repair workplace. Domestic vessel repair companies mainly target small- and medium-sized vessels. There are only few workplaces that can carry out regular examination or repair work on large vessels such as LNG vessels, and due to the high price of vessel repair, most of the domestic repair work on large vessels including LNG vessels tends to be snatched by markets in Southeast Asia or China. Despite the tremendous domestic demand of Korea that has established the world's first shipbuilding industry and world's sixth biggest harbor infrastructure, its vessel repair industry can be said to be in very poor condition. In order to vitalize vessel repair industry, this study is aimed to analyze the environmental influence of vessel repair workplaces in Gyeongnam where vessel repair companies are concentrated and suggest standard processes by analyzing vessel repair processes precisely.

A study on the comparision of effects and application of marine fuel reduction methods (선박 연료 절감 방법들의 효과비교 및 적용에 관한 연구)

  • Park, Goryong;Cho, Kwonhae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1057-1063
    • /
    • 2014
  • Concerning $CO_2$ reduction from International Societies, lots of laboratories and relevant societies suggest many reports on how to reduce fuel consumption from their specific ways. Undoubtedly, cutting costs is the final desired destination for owner outcome, but many questions there are on the way yet: how is this measure working? how efficient is it? On what size of ship would it work best and be the most effective? etc. Fuel cost is one of the major cost elements for ship owners and/or operators. And by reducing fuel consumption owners and/or operators will reduce both their costs and the environmental impact from their ship. This paper is aim to address how the measures work for saving fuel consumption through improve propulsion efficiency, installation cost and benefit can be calculated easily in the return on investment for estimated one year operation, and finally their compatibility with other fuel saving measure devices.

Structural Safety Evaluation for the Hydraulic Power Unit of Topside Module According to the Movement of Offshore Plant (해양구조물 움직임에 따른 Topside Module의 HPU에 대한 구조안전성 평가)

  • Ryu, Bo-Rim;Lee, Jin-Uk;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.723-731
    • /
    • 2020
  • The design of offshore plants should reflect the various requirements of the owner and the classification society. For a topside module mounted on an of shore structure, the design process is very demanding because of the large spatial constraints and the many requirements related to marine environmental conditions and safety such as the movement of the structure. In this study, the load acting on the hydraulic power unit, which is one of the main equipment in the topside module, was calculated according to the DNVGL rule; the structural safety was evaluated according to each load condition and the structural reliability of the developed product was improved. For structural analysis, MSC software was used, and structural analysis was performed under five load conditions to review structural safety for various movements. The results show that the maximum stress occurred during pitching toward the stern (Load Case 5). The stress level was approximately 85 % of the allowable stress, and the maximum deformation was approximately 5 % of the allowable value. The structural safety was confirmed, and no intermember interference occurred.

Structural Safety Assessment of Tie-down for Securing Helicopter (헬리콥터 고정용 안전장치 구조 안전성 평가)

  • Myung Su Yi;Kwang-Chul Seo;Joo Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.372-379
    • /
    • 2023
  • International oil prices are expected to increase from $85 a barrel this year to up to $100 a barrel in the second half of the year; this is likely to increase orders for offshore plants in the global market. One main characteristic of offshore plants is that a large helideck is located on the top side, and aluminum alloys are used as the basic material of the structure for weight reduction and corrosion resistance. Shipowners are increasing the size of helicopters to quickly evacuate lives in the event of an emergency, and the safety use load of devices that can stably secure helicopters to the deck is also required to increase. Owing to the nature of the aluminum material, the structural strength caused by welding is greatly reduced; therefore, the fixing device must be designed by embedding it in the deck and fixing it with bolts. In this study, a model applying aluminum alloy 6082-T6 was developed to develop a helicopter fastening device that can be used for large helidecks (diameter = 28 m). The developed item was verified through nonlinear structural strength calculation to satisfy the load used for the actual fastening condition. The load condition with a 45° showed a lower ultimate strength than the 90° case owing to local plastic collapse. The nonlinear structural collapse behavior showed a result similar to that of the experimental test. The main contents derived from this study are considered to be reference materials when evaluating the structural strength of similar aluminum equipment.

Design for avoid unstable fracture in shipbuilding and offshore plant structure (조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술)

  • An, Gyubaek;Bae, Hong-Yeol;Noh, Byung-Doo;An, Young-Ho;Choi, Jong-Kyo;Woo, Wanchuck;Park, Jeong-Ung
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

A Study on the Development of Maintenance System for Equipment of LNG-FPSO Ship (LNG-FPSO 선박 장비들의 보전활동 지원시스템 개발에 관한 연구)

  • Lee, Soon-Sup;Kang, Donghoon;Lee, Jong-Hyun;Lee, Seung-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 2016
  • In this paper, a maintenance system is developed for LNG-FPSO topside and hullside equipment based CBM (Condition Based Maintenance) methodology. First, the development system defined the PWBS(Product Work Breakdown Structure) of major equipment of LNG-FPSO. Second, the development system developed the failure analysis, economic evaluation for optimal maintenance plan and database systems that save and manage information about equipment, failure mode, failure rate and failure cause. Finally, the verification of the development system was applied to the inlet system of topside and the pump tower system of hullside and the system was confirmed the effectiveness of CBMS(Condition Based Maintenance System).

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

A study on the efficiency advancement for evacuation of the crews by ship structural improvement (선박 구조 개선을 통한 승무원의 피난 효율 향상을 위한 연구)

  • Kim, Wonouk;Lee, Myoungho;Kim, Jongsu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • Onshore great fires can normally be extinguished by firefighters using special firefighting equipment and its suitable method. However, offshore fires on the ships are to be extinguished by the crew without any supports from the onshore. Also, crews working on board are exposed to high risk of emergency evacuation due to the complicated structure arrangement of the ships and different accident types such as fire and ship collisions. As most of damage and loss of life in fire are associated with suffocation, shortening of evacuation time is an important factor to improve a survival rate. In this study, visibility in the accommodation area is analyzed by using the temperature and smoke flow which are obtained by the Fire Dynamic Simulator(FDS) as a Three-Dimensional Fire Analysis program to understand the survival rate of the crew upon the fire. The fire doors for most of ships are designed to close automatically when the fire alarm is activated. These automatic closing of the fire doors is a very effective system to delay the spread of flame and smoke flow for the unmanned spaces of the fire protected area. However, if the crew cannot escape within the estimated time, the crew inside the fire protected area will be damaged a lot. In this paper, the comparative analysis between the evacuations by using the fire door from the fire protected area and the suggested fire shielding structure in this study is carried out by the smoke flow rate and the temperature rise rate.

A study on the change of EEOI before and after modifying bulbous at the large container ship adopting low speed operation (대형 컨테이너선의 저속 운항 시 선수부 개조 전후 EEOI 변화에 대한 연구)

  • Park, Goryong;Cho, Kwonhae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The International Maritime Organization(IMO) has adopted and implemented compulsory regulation for reducing greenhouse gas emission that cause global warming. However, with global warming underway, the IMO plans to enforce voluntary carbon dioxide emissions reduction based on the Ship Energy Efficient Management Plan and the Energy Efficiency Operational Indicator(EEOI) in the near future. Large container ships sail at low speeds in order to save fuel and reduce carbon dioxide emissions. However, bulbous bows designed for high-speed ships decrease fuel efficiency by acting as resistance when reduced speeds are adopted by large container ships. In order to adopt low-speed operations and increase fuel savings, the bulbous bow of a large container ship was modified into the proper shape and size. Fuel consumption was compared for checking the result of EEOI before and after modifying the bulbous bow adopted on low speed operation of large high-speed ships. The results confirmed much larger carbon dioxide emissions reduction than expected. If EEOI would be implemented as compulsory regulation for reducing carbon dioxide emissions, bulbous bow modification can be considered as one of the fuel saving methods for the high-speed ships.