DOI QR코드

DOI QR Code

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di (Dept. of Naval Architecture & Ocean Engineering, Pusan National University (PNU)) ;
  • Park, Jong-Chun (Dept. of Naval Architecture & Ocean Engineering, Pusan National University (PNU)) ;
  • Hwang, Sung-Chul (Offshore Plant Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO)) ;
  • Jeong, Seong-Yeob (Ship Hydrodynamics Research Group (Ice Model Basin), Korea Research Institute of Ships and Ocean Engineering (KRISO)) ;
  • Kim, Hyun-Soo (Dept. of Naval Architecture & Ocean Engineering, Inha Technical College)
  • Received : 2018.03.07
  • Accepted : 2019.01.11
  • Published : 2019.02.18

Abstract

A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

Keywords

References

  1. Antoci, C., Gallati, M., Sibilla, S., 2007. Numerical simulation of fluidestructure interaction by SPH. Comput. Struct. 85 (11), 879-890. https://doi.org/10.1016/j.compstruc.2007.01.002
  2. Abbas, S., Alizada, A., Fries, T.P., 2010. Model-independent approaches for the XFEM in fracture mechanics. Int. J. Numer. Methods Eng. 1, 0-10.
  3. Beckmann, B., Schicktanz, K., Curbach, M., 2014. DEM Simulation of Concrete Fracture Phenomena.
  4. Bui, H.H., Fukagawa, R., Sako, K., Ohno, S., 2008. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elasticeplastic soil constitutive model. Int. J. Numer. Anal. Methods GeoMech. 32 (12), 1537-1570. https://doi.org/10.1002/nag.688
  5. Chan, H.K.D., 1981. Creep and Fracture Simulation of Ice Using the Finite Element Method. Ph.D. McMaster University.
  6. Dai, M., Shen, H.H., Hopkins, M.A., Ackley, S.F., 2004. Wave rafting and the equilibrium pancake ice cover thickness. J. Geophys. Res. 109, C07023. https://doi.org/10.1029/2003JC002192
  7. Hansen, E.H., Loset, S., 1999. Modelling floating offshore units moored in broken ice: model description. Cold Reg. Sci. Technol. 29, 97-106. https://doi.org/10.1016/S0165-232X(99)00023-3
  8. Hopkins, M.A., 1998. Four stages of pressure ridging. J. Geophys. Res. 103, 21883-21891. https://doi.org/10.1029/98JC01257
  9. Hopkins, M.A., Shen, H.H., 2001. Simulation of pancake-ice dynamics in wave field. Ann. Glaciol. 33, 355-360. https://doi.org/10.3189/172756401781818527
  10. Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C., 2014. Development of a fully Lagrangian MPS-based coupled method for simulation of fluidestructure interaction problems. J. Fluid Struct. 50, 497-511. https://doi.org/10.1016/j.jfluidstructs.2014.07.007
  11. Hwang, S.C., Park, J.C., Gotoh, H., Khayyer, A., Kang, K.J., 2016. Numerical simulation of sloshing flows with elastic Baffles by using a particle-based fluidestructure interaction analysis method. Ocean Eng. 118, 227-241. https://doi.org/10.1016/j.oceaneng.2016.04.006
  12. Hubner, B., Walhorn, E., Dinkler, D., 2004. A monolithic approach to fluidestructure interaction using space-time finite elements. Comput. Methods Appl. Mech. Eng. 193 (23), 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
  13. Ji, S., Li, Z., Li, C., Shang, J., 2013. Discrete element modeling of ice loads on ship hulls in broken ice fields. Acta Oceanol. Sin. 32 (11), 50-58.
  14. Juvinall, R.C., Marshek, K.M., 2006. Fundamentals of Machine Component Design, vol. 83. John Wiley & Sons, New York.
  15. Karulin, E.B., Karulina, M.M., 2011. Numerical and physical simulations ofmoored tanker behaviour. Ships Offshore Struct. 6 (3), 179-184. https://doi.org/10.1080/17445302.2010.544087
  16. Khayyer, A., Gotoh, H., 2010. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl. Ocean Res. 32 (1), 124-131. https://doi.org/10.1016/j.apor.2010.01.001
  17. Khayyer, A., Gotoh, H., 2011. Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys. 230 (8), 3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009
  18. Koshizuka, S., Oka, Y., 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (3), 421-434. https://doi.org/10.13182/NSE96-A24205
  19. Lau, M., Lawrence, K.P., Rothenburg, L., 2011. Discrete element analysis of ice loads on ships and structures. Ships Offshore Struct. 6 (3), 211-221. https://doi.org/10.1080/17445302.2010.544086
  20. Lee, B.H., Park, J.C., Kim, M.H., Hwang, S.C., 2011. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput. Methods Appl. Mech. Eng. 200 (9), 1113-1125. https://doi.org/10.1016/j.cma.2010.12.001
  21. Lepparanta, M., Lensu, M., Lu, Q.M., 1990. Shear flow of sea ice in the Marginal Ice Zone with collision rheology. Geophysica 25 (1-2), 57-74.
  22. Metrikin, I., Loset, S., 2013. Nonsmooth 3D discrete element simulation of a drillship in discontinuous ice. In: Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions. Finland, Espoo.
  23. Morgan, D., Sarracino, R., KcKenna, R., Thijssen, J.W., 2015. Simulation of ice rubbling against conical structures using 3D DEM. In: Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway.
  24. Polojarvi, A., Tuhkuri, J., 2009. 3D discrete numerical modelling of ridge keek punch through tests. Cold Reg. Sci. Technol. 56, 18-29. https://doi.org/10.1016/j.coldregions.2008.09.008
  25. Peixiang, H., Ziran, L., Changchun, W., 2013. An Element-free Galerkin Method for Dynamic Fracture in Functional Graded Material. In ICF10, Honolulu (USA) 2001.
  26. Sakharov, A., Karulin, E., Marchenko, A., Karulina, M., Sodhi, D., Chistyakov, P., 2015. Failure envelope of the Brittle strength of ice in the fixed-end beam test (two scenarios). In: 23rd International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway.
  27. Selvadurai, A.P.S., Sepehr, K., 1999. Two-dimensional discrete element simulations of ice-structure interaction. Int. J. Solid Struct. 36, 4919-4940. https://doi.org/10.1016/S0020-7683(98)00272-8
  28. Sepehri, J., 2014. In: Application of Extended Finite Element Method (XFEM) to Simulate Hydraulic Fracture Propagation from Oriented Perforations. Ph.D. Texas Tech University.
  29. Shen, H.H., Hibler, W.D., Lepparanta, M., 1987. The role of floe collisions in sea ice rheology. J. Geophys. Res. 92 (C10), 7085-7096. https://doi.org/10.1029/JC092iC07p07085
  30. Sun, S., Shen, H.H., 2012. Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Reg. Sci. Technol. 78, 31-39. https://doi.org/10.1016/j.coldregions.2012.02.003
  31. Tan, Y., Yang, D., Sheng, Y., 2009. Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J. Eur. Ceram. Soc. 29 (6), 1029-1037. https://doi.org/10.1016/j.jeurceramsoc.2008.07.060
  32. Timco, G.W., Weeks, W.F., 2010. A review of the engineering properties of sea ice. Cold Reg. Sci. Technol. 60, 107-129. https://doi.org/10.1016/j.coldregions.2009.10.003
  33. Wang, W., Roubier, N., Puel, G., Allain, J.M., Infante, I.C., Attal, J.P., Vennat, E., 2015. A new method combining finite element analysis and digital image correlation to assess macroscopic mechanical properties of dentin. Materials 8 (2), 535-550. https://doi.org/10.3390/ma8020535
  34. Xu, Z., Tartakovsky, A.M., Pan, W., 2012. Discrete-element model for the interaction between ocean waves and sea ice. Phys. Rev. 85, 016703.
  35. Zhan, D., Agar, D., He, M., Spencer, D., Molyneux, D., 2010. Numerical simulation of ship maneuvering in pack ice. In: Proceedings of the ASME 2010 29th International Conference on Ocean. Offshore and Arctic Engineering, Shanghai, China. OMAE2010-21109.

Cited by

  1. 쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 vol.57, pp.1, 2019, https://doi.org/10.3744/snak.2020.57.1.023
  2. A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures vol.94, 2019, https://doi.org/10.1016/j.apm.2021.01.011