• 제목/요약/키워드: Ship Engine Fuel

검색결과 141건 처리시간 0.027초

연료 절감을 위한 최적운전 조건 -신습선 부산 402호의경우- (The Optimum Operating Condition for Reduction of Fuel Consumption -In the Case of Training Ship Pusan 402-)

  • 김영식;김삼곤;윤석훈
    • 수산해양기술연구
    • /
    • 제22권1호
    • /
    • pp.29-33
    • /
    • 1986
  • This paper aims at finding out the optimum operating condition to reduce fuel consumption for the training ship Pusan 402 with controllable pitch propeller. For this purpose, this paper examints the variation of ship speed and fuel consumption in accordance with the change of engine revolution and propeller pitch. The results obtained are as follows: 1. When engine revolution is constant, the ship speed sluggishly increases according to the increase of propeller pitch but fuel consumption extremely increases. The higher revolution the engine is, the more remarkable this tendency is. 2. As the engine revolution becomes lower, the fuel consumption per mile decreases. Howt.er = the fuel consumption under the same engine revolution differs according to the propeller pitch. 3. Specific fuel consumption is uniformed about 180g/ps.h at any case of load. 4. Among the various operating conditions which yield the same ship speed, fuel consumption lowers in the case of lower engine revolution and larger propeller pitch.

  • PDF

수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구 (Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application)

  • 오정모
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.

저급 혼합연료유 연소시험 결과 (The Test Result of the Blended Oil Combustion in the Engine having used Marine Gas Oil)

  • 이기동;강대선
    • 선박안전
    • /
    • 통권23호
    • /
    • pp.37-50
    • /
    • 2007
  • The test result is a part of a study on the reduction of fuel expense. the test was conducted in the ship of east sea fisheries supervision office which is modified from 139 ton trawler to 183 ton petrol ship. The result of NOx emission and Smoke Value for main engine and generator engine are measure and included in this paper. The information on pre-treatment systems and measuring equipment also includes.

  • PDF

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.

최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구 (A study on the selection of optimal marine engine and its techno- economical evaluation method)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

선박의 유체동역학 특성 및 엔진 모드를 고려한 에너지효율운항지수 추정 프레임워크 개발 (Development of a Framework to Estimate the EEOI of a Ship Considering the Hydrodynamic Characteristics and Engine Mode)

  • 유영준;박홍래
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.457-465
    • /
    • 2018
  • Since IMO has discussed the effectuation of the EEDI, EEOI and SEEMP, each country, shipping company, shipbuilding company and research institute have been requested to prepare the design, construction and operation of the efficient ship. From the shipbuilding company's point of view, it was necessary to develop a method based on the maneuvering equations of motion in a bid to estimate the EEOI considering the design, model test results and the calculation results of the ship. In this paper, the estimation method of RPM, power and fuel consumption proposed in the previous research was developed to construct a framework that helps in the estimation of the EEOI. It was possible to estimate the EEOI from the estimated ship speed (distance), LNG cargo mass, fuel consumptions and emission factors according to the type of fuel. The rapid increase of the evaluated EEOI was observed when the LNGC with ME-GI engine executing the course changed with a large difference. This prompted the comparison of the type of fuel on the estimated EEOI by considering HFO, LNG fuel and MGO properties.

Gas Fueled Ship - IMO의 IGF Code 개발 동향 (Gas Fuelled Ship - Current Status of IGF Code Development at IMO)

  • 강재성;강호근;김기평;박재홍;정정호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2011
  • The utilization of gas as ship fuel requires a new set of regulations by IMO and society of classification. Maritime Safety Committee(MSC) and the subcommittee Bulk-Liquids and Gases(BLG) in IMO developed "Interim Guidelines on Safety for Natural Gas-fueled Engine Installation in Ships(Res.MSC.285(86))" for the use of natural gas in internal combustion engine. According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, several parts of ships should follow safety criteria in terms of Fuel bunkering, Gas safe Machinery spaces, Gas Fuel Storage and etc. In this thesis, details of the IGF code shall be described and development of the IGF code in IMO shall be illustrated.

  • PDF

Effect of Impinging Plate on Exhaust Emission and Engine Performance in Diesel Engine

  • Jin, Yong-Su;Kim, Jae-Dong;Kim, Yeong-Sik
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.82-88
    • /
    • 2015
  • The purpose of this study is to investigate the effect of the impinging plate on combustion process in Diesel engine. Especially, the variation of exhaust emission and engine performance by the change of fuel injection timing and fuel injection pressure between the trial engine with impinging plate and the prototype engine were examined. The nitrogen oxide concentration of the trial engine decreased more than 50% compared to the prototype engine, however, smoke concentration of the trial engine indicated higher degree than the prototype engine. The smoke concentration, fuel consumption rate and exhaust gas temperature decreased as the fuel injection timing become faster, whereas the nitrogen oxide concentration decreased as the fuel injection timing is retarded. The nitrogen oxide concentration, fuel consumption rate and exhaust gas temperature decreased as the fuel injection pressure become lower. But smoke concentration decreased as the fuel injection pressure become higher.

선박 기관의 경제적 운전에 관한 연구 - 실습선 새누리호를 중심으로 - (A Study on Economical Operation of a Ship's Main Engine - The case of Training Ship SAENURI -)

  • 김홍렬;김부기;임긍수;김득봉
    • 해양환경안전학회지
    • /
    • 제19권1호
    • /
    • pp.52-58
    • /
    • 2013
  • 선박의 운항에 소요되는 운항비는 선박의 종류, 크기, 속력, 항행구역 등에 따라 다를 수 있지만, 연료비가 차지하는 비율은 50~60 %에 달하는 것으로 알려져 있다. 최근 국제 유가의 상승으로 인한 선박 운용비를 절감하기 위하여 중소형 선박에서도 저질연료유의 사용이 검토되고 있는 추세이다. 더 나아가 해운선사들은 연료소모량을 줄이기 위한 방법으로 감속운항을 취하고 있다. 따라서, 본 연구에서는 실선을 이용하여 해상에서의 선속대비 주기관의 연료소모량을 계측하고, 부하에 따른 전진계수 대비 속력과 연료소모량의 관계를 통해 상용연속출력보다 낮은 주기관 부하의 70 % 영역이 최적의 운항조건이라고 제안하였다.

전화전략기반 엔진출력 최적화를 통한 선박경제운항시스템 (An Economic Ship Routing System by Optimizing Outputs of Engine-Power based on an Evolutionary Strategy)

  • 장호섭;권영근
    • 한국통신학회논문지
    • /
    • 제36권4B호
    • /
    • pp.412-421
    • /
    • 2011
  • 선박경제운항이란 기상예측정보를 활용하여 연료소모량을 최소화하도록 선박을 운항하는 것으로서 최근 많은 시스템이 이를 위해 연구되고 있다. 기존의 시스템에서는 문제의 복잡성을 줄이기 위해 엔진의 출력을 고정하거나 속력을 일정하게 운항한다는 가정을 기반으로 접근하고 있다. 그러나 엔진출력을 잘 조절한다면 더 좋은 기상환경에서 선박이 운항할 수 있게 되어 연료소모량을 더욱 줄일 수 있다. 본 논문에서는 진화전략 알고리즘을 사용하여 항로의 세부구간별로 최적출력을 탐색할 수 있는 새로운 경제운항시스템을 제안하였다. 또한, 지리적 최단 경로를 찾을 수 있는 $A^*$ 알고리즘과 곡선 표현의 자유도를 높일 수 있는 방법을 사용함으로써 임의의 출발지와 목적지에 대해서 제안된 경제운항시스템을 적용할 수 있도록 하였다. 총 36가지의 운항 시나리오에 대해서 이 논문에서 제안된 시스템의 성능을 기존의 출력고정 운항방법과 비교한 결과, 운항소요시간은 거의 차이가 없으면서도 연료소모량을 평균적으로 1.3%, 최대로는 5.6% 개선시킬 수 있음을 관찰하였다.