• Title/Summary/Keyword: Ship Acoustics

Search Result 17, Processing Time 0.023 seconds

A Concept on the M&S-based T&E for Ship Acoustics (M&S 기반 함정음향 시험평가 개념)

  • 조창봉
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2004
  • Recently, ship acoustics takes more important role in acoustic stealth and classification of underwater targets. In this paper, a theoretical concept is proposed for M&S-based test and evaluation of ship acoustics. The concept is based on two different approaches: on Top-Down method which emphasizes the survivability of the ship and on Bottom-Up method which considers acoustic characteristics of the ship-equipments. In order to improve the effectiveness of M&S-based T&E for ship acoustics, it is recommended in this paper to compromise the two approaches as adequate.

A Study on Noise and Vibration Reduction Measurements of a Floating Floor Structure by means of a Ship Cabin Mock-up (선박 격실 mock-Up을 이용한 뜬바닥구조의 소음.진동 저감효과 계측에 관한 연구)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.719-725
    • /
    • 2008
  • In this paper, noise and vibration reduction for floating-floored ship cabin is studied. A mock-up is built by using 6 mm steel plate, and two identical cabins are made for simulation of ship cabins. When a speaker is used as a sound and vibration sources, it is shown that floating floor is more effective in isolating sound than bare deck by 2-5 dB. It is also shown that structure-borne noise of the bare deck is greater than that of floating-floored deck by 3-10 dB. For tapping machine excitation, it is found that the effect of floating floor in airborne noise and structure-borne noise reduction reaches up to 40-50 dB for high frequency ranges.

Effects of Inplane Modes in SEA on Structure-Borne Noise Transmission in Ship Structures

  • Kim, Jae-S.;Kim, Hyun-S.;Kang, Hyun-J.;Kim, Sang-R.
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • It is normal practice to consider bending wave modes only, when one applies SEA (Statistical Energy Analysis) to ship structures because of complexities in SEA modeling and evaluation of coupling loss factors for inplane modes. According to the result of Tratch[1], the inplane wave modes becomes important for the analysis of a foundation structure as the distance from the source and receiver increases. In this paper, the effect of inplane wave modes on structure-borne noise propagation in ship structures is presented. It is shown that the inplane wave could increase the noise level more than 10 dB compared with the results without inplane wave modes at high frequency bands for compartments far from the source location.

  • PDF

A Study on Structure-Borne Noise Reduction for Resiliently Mounted Pumps for Ship (탄성지지된 박용 펌프의 고체음저감에 관한 연구)

  • Kim, Hyun-Sil;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.488-495
    • /
    • 2007
  • In this paper, SBN (Structure-Borne Noise) reduction of resiliently mounted machinery and effect of the foundation impedance on mount performance is studied. SBN reduction through the mount is analyzed by using two theoretical models; mass-spring model and wave model, in which longitudinal wave propagation is included. It is found that floor impedance greatly affects SBN reduction through lower mount, while it is almost negligible to SBN reduction through upper mount. Comparisons between measurement and predictions shows that the mass-spring model is valid only in low frequency range below few hundred Hz, while for high frequency ranges longitudinal wave propagation in the mount must be considered.

Comparison of Sound Transmission Loss of Panels Used in Ship Cabins for Field and Laboratory Measurements

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, FSTL (Field Sound Transmission Loss) measured in a mock-up simulating ship cabins is studied. A mock-up is built by using 6 mm steel plate, and two identical cabins are made where 25 mm or 50 mm sandwich panel is used to construct wall and ceiling inside the steel structure. Various wall panels and ceilings are tested, where effects of wall and ceiling panel thickness, and presence of a unit toilet on FSTL are investigated. It is found that the effect of unit toilet on FSTL is at most 1 dB. From the comparison of FSTL for panels of the same thickness of 50 mm, it is observed that panel having inside air cavity of 10 mm shows higher STL than that of the panel without air cavity. Comparison of FSTL for panels of 50 mm and 25 mm thickness shows that dependency on surface density predicted by mass law is not observed. The sandwich panels act as a mass-spring system, which shows a resonant mode that cannot be explained by the mass law. It is also found that STL from laboratory test is higher than FSTL by 5- 10 dB, which can be explained by flanking structure-borne noise transmission path such as ceiling, floor and corridor-facing wall.

Effect of Airborne Noise from Ship Machinery on Underwater Noise (선박의 장비 공기소음이 수중소음에 미치는 영향)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.569-574
    • /
    • 2011
  • In research vessels or naval ships, airborne noise from machineries such as diesel engine is the major source of underwater noise at low speed. In this paper, effect of engine noise on underwater noise is studied by considering two paths; sound radiation from hull plate and direct airborne noise transmission through hull plate. SEA (Statistical energy analysis) is used to predict hull plate vibration induced by engine noise, where SEA model consists of only two subsystems; engine room air space and hull plate. The pressure level in water is calculated from sound radiation by plate. Engine noise transmission through hull plate is obtained by assuming plane wave propagation in air-limp plate-water system. Two effects are combined and compared to the measurement, where speaker is used as a source in engine room and sound pressure levels in engine room and water are measured. The hydrophone is located 1 m away from the hull plate. It is found below 1000 Hz, prediction overestimates underwater sound pressure level by 5 to 12 dB.

Evaluation of Sound Insulation Performance of a Unit Cabin Mock-up (유니트 캐빈 목업(mock-up)의 차음성능평가)

  • Kim, Hyun-Sil;Kim, Sang-Ryul;Kim, Bong-Ki;Kim, Jae-Seung;Lee, Sung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Sound insulation performance of a unit cabin mock-up is studied, where two identical rooms simulating cruise ship cabin are installed. STL (Sound Transmission Loss) measurement in the mock-up shows that STL of the partition between rooms is degraded by imperfect door ceiling and gap between wall and floor. It is also observed that gap around lighting and electrical outlet slightly affect the STL in high frequency ranges, since lighting and electrical outlet are supported by mineral wool in the back side due to fire-resistance requirement. Even after all possible gaps are sealed, STL of the partition is found to be lower than that measured in the laboratory by 9 dB. Measurement of SBN (Structure-Borne Noise) reveals that flanking transmission of SBN along the steel deck floor can severely deteriorate STL of the partition. Statistical energy analysis (SEA) of the mock-up confirms importance of the floor SBN control, in which increasing damping is essential to ensure high STL.

A Study of Floor Impact Noise Reduction of Cabin Using Floating Floor (뜬바닥구조를 이용한 선실 바닥충격음 저감에 관한 연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Cha, Sun-Il;Kim, Young-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, floor impact noise reduction in cruise ship cabin is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN (Structure-borne Noise) and floor damping are measured to study the effect of floating floor structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

Vibration Transmission of Plate-Beam Structure having discontinuity (평판과 보의 연성구조물의 진동에너지 전달특성 분석에 관한 연구)

  • 이형택;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.391-395
    • /
    • 1997
  • The transmission of sound and vibration through structures is of interest in many noise control problems, including architectural acoustics, sound transmission through air craft, spacecraft and ship, and the transmission of noise through machinery and engine enclosures. Statistical Energy Analysis provides a simple and accurate method of approaching these problems. In this paper, comparing the measured coupling loss factor of plate-beam with measured coupling loss factor of mass on the junction will be inspected.

  • PDF

An Analysis on Structureborne Noise Tranmission Loss of Ship Structure (선체구조의 고체음 전달해석)

  • 강현주;김재승;김현실
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.31-39
    • /
    • 1991
  • When predicting shipboard noise levels, the accuracy depends largely on the value of the structureborne noise transmission loss. Although empirical formulars are frequently used because of their simplicities, researches on the analytical methods to estimate the transmission loss of structureborne noise such as wave guide theory and SEA has long been one of the major topics in shipboard acoustics to overcome the inherent limitations of empirical ones. This paper describes an application of SEA to predict the transmission loss of the structurebornenoise of a simple ship-like structural model consisted of 22 flat plates. The result shows that discrepancies between experimental and theoretical transmission losses are less than 3 dB.

  • PDF