• Title/Summary/Keyword: Shifter

Search Result 389, Processing Time 0.023 seconds

A study on Design for Phase Shifter for Microwave Circuits (마이크로파 회로용 Phase Shifter의 설계에 관한 연구)

  • ;;;;;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.152-155
    • /
    • 2000
  • This paper presents the characteristics of phase shifter which is operating at 2 GHz band and 12 GHz band. Two types of substrate stick with different dielectric constants are considered in these bands. Dielectric constants of microstrip feed crank line is 2.6. In the case of a small substrate stick with dielectric constant of 9 in the calculation, S21 phase is linearly varied at 1.98 GHz and 2.45 GHz, and variation of the shifting angle is about 20。. The angle of S21 phase shifting at 12 GHz band if calculated about 30。

  • PDF

An Ultra Low-Power and High-Speed Down-Conversion Level Shifter Using Low Temperature Poly-Si TFTs for Mobile Applications

  • Ahn, Soon-Sung;Choi, Jung-Hwan;Choi, Byong-Deok;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1279-1282
    • /
    • 2006
  • An ultra low-power down-conversion level shifter using low temperature poly-crystalline silicon thin film transistors is proposed for mobile applications. The simulation result shows that the power consumption of the proposed circuits is only 17% and the propagation delay is 48% of those of the conventional cross-coupled level shifter without additional area. And the measured power consumption is only 21% of that of the crosscoupled level shifter.

  • PDF

Microwave Properties of Tunable Phase Shifter Using High Temperature Superconducting Thin Film (고온초전도 박막을 이용한 튜너블 이상기의 마이크로파 특성)

  • Kwak Min Hwan;Kim Young Tae;Moon Seong Eon;Ryu Han Cheol;Lee Su Jae;Kang Kwang Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • High temperature superconductor, $\YBa_2Cu_3O_{7-x}$ (YBCO) and ferroelectric, $\Ba_{0.1}Sr_{0.9}TiO_{3}$ (BST) multilayer thin films were deposited using on MgO(100) substrates pulsed laser deposition. The thin films exhibited only (001) peaks of YBCO and 1357 The HTS thin films demonstrated excellent zero resistance temperature of 92.5 K. We designed and fabricated HTS ferroelectric phase shifter using high frequency system simulator and standard photolithography method, respectively The HTS phase shifter shows a low insertion loss (2.97 dB) and large phase change ($\162^{circ}$) with 40 V do bias at 10 GHz. The HTS phase shifter shows 54 of figure of merit. These results can be applicable to phased anay antenna system for satellite communication services.

Design and Fabrication of Distributed Analog Phase Shifter Using Ferroelectric (Ba,Sr)TiO$_3$ Thin Films (강유전체 (Ba,Sr)TiO$_3$ 박막을 이용한 분포 정수형 아날로그 위상변위기 설계 및 제작)

  • 류한철;김영태;문승언;곽민환;이수재
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.370-374
    • /
    • 2002
  • This paper describes the design and fabrication of distributed analog phase shifter circuit. The phase shifter consist of coplanar waveguide(CPW) lines that are periodically loaded with voltage tunable (Ba,Sr)TiO$_3$ thin film interdigital(IDT) capacitors deposited by the pulsed laser deposition(PLD) on (001) MgO single crystals. The phase velocity on these IDT loaded CPW lines is a function of applied bias voltage, thus resulting in analog phase shifting circuits. The measured differential phase shift is 48$^{\circ}$ and the insertion loss decreases from -5㏈ to -3㏈ with increasing bias voltage from 0 to 40 V at 100㎐.

  • PDF

A Characteristic Study on a Diode Phase Shifter in a Parallel Plate Waveguide (평행판도파관내에서의 다이오드 위상변위기 특성에 관한 연구)

  • Lee, Kee-Oh;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.644-651
    • /
    • 2009
  • In this paper, the design results of a $22.5^{\circ}$ diode phase shifter for the RADANT lens and two $11.25^{\circ}$, $22.5^{\circ}$ dielectric phase shift layers for the diode phase shifter are presented. The amount of phase shift introduced by each dielectric layer depends on the thickness and the shape of the metal strip and the electrical property of the diode. The equivalent circuit model is employed to represent the dielectric phase shift layer, and the simulated result of the equival circuit model is compared with the result of the field simulation. The measured data of the fabricated $11.25^{\circ}$, $22.5^{\circ}$ dielectric phase shift layer shows about $2^{\circ}$ phase shift error.

A High-speed Level-shifter Circuit for Display Panel driver (디스플레이 구동을 위한 고속 레벨-쉬프터 회로)

  • Park, Won-ki;Cha, Cheol-ung;Lee, Sung-chul
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.657-658
    • /
    • 2006
  • A Novel level-shifter circuit for Display Panel Driver is presented. A Proposed level-shifter is for the high speed and high-voltage driving capability. In order to achieve this purpose, the proposed level-shifter restricts and separates the Vgs of the output driver's pull-up PMOS and pull-down NMOS with Zener diode. And a speed-up PMOS transistor is introduced to reduce delay. The control signal of speed-up PMOS was designed by bootstrapping method to minimize the gate to source (Vgs) voltage to avoid Vgs breakdown.

  • PDF

Design of a Charge Pump Circuit Using Level Shifter for LED Driver IC (LED 구동 IC를 위한 레벨 시프터 방식의 전하펌프 회로 설계)

  • Park, Won-Kyeong;Park, Yong-Su;Song, Han-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-17
    • /
    • 2013
  • In this paper, we designed a charge pump circuit using level shifter for LED driver IC. The designed circuit makes the 15 V output voltage from the 5 V input in condition of 50 kHz switching frequency. The prototype chip which include the proposed charge pump circuit and its several internal sub-blocks such as oscillator, level shifter was fabricated using a 0.35 um 20 V BCD process technology. The size of the fabricated prototype chip is 2,350 um ${\times}$ 2,350 um. We examined performances of the fabricated chip and compared its measured results with SPICE simulation data.

4×4 Broadband Phased Array Antenna Using LHTL Based Phase Shifter (LHTL 위상변위기를 이용한 4×4 광대역 위상배열안테나)

  • Park, Soonwoo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.379-382
    • /
    • 2017
  • This paper proposes a $4{\times}4$ broadband phased array antenna using a Left-Handed Transmission Line (LHTL) based phase shifter. The phased array is constructed with sixteen quasi-Yagi antenna elements and the phase shifters, as well as four power dividers. A key component of the system, the LHTL based phase shifter is able to control a phase delay of incident waves linearly and continuously. The fabricated phased array antenna operate for a frequency range of 800 MHz (1.6 GHz~2.4 GHz). The beam scanning range of the $4{\times}4$ array antenna is ${\pm}27^{\circ}$ horizontally and vertically while the antenna gain is maintained with a variation of ${\pm}1.4dBi$.

The New LM-PCR/Shifter Method for the Genotyping of Microorganisms Based on the Use of a Class IIS Restriction Enzyme and Ligation-Mediated PCR

  • Krawczyk, Beata;Leibner-Ciszak, Justyna;Stojowska, Karolina;Kur, Jozef
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1336-1344
    • /
    • 2011
  • This study details and examines a novel ligation-mediated polymerase chain reaction (LM-PCR) method. Named the LM-PCR/Shifter, it relies on the use of a Class IIS restriction enzyme giving restriction fragments with different 4-base, 5' overhangs, this being the Shifter, and the ligation of appropriate oligonucleotide adapters. A sequence of 4-base, 5' overhangs of the adapter and a 4-base sequence of the 3' end of the primer(s) determine a subset of the genomic restriction fragments, which are amplified by PCR. The method permits the differentiation of bacterial species strains on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light. The usefulness of the LM-PCR/Shifter method for genotyping is analyzed by a comparison with the restriction endonuclease analysis of chromosomal DNA by the pulsed-field gel electrophoresis (REA-PFGE) and PCR melting profile (PCR MP) methods for isolates of clinical origin. The clustering of the LM-PCR/Shifter fingerprinting data matched those of the REA-PFGE and PCR MP methods. We found that the LM-PCR/Shifter is rapid, and offers good discriminatory power and excellent reproducibility, making it a method that may be effectively applied in epidemiological studies.

A 60 GHz Bidirectional Active Phase Shifter with 130 nm CMOS Common Gate Amplifier (130 nm CMOS 공통 게이트 증폭기를 이용한 60 GHz 양방향 능동 위상변화기)

  • Hyun, Ju-Young;Lee, Kook-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1111-1116
    • /
    • 2011
  • In this paper, a 60 GHz bidirectional active phase shifter with 130 nm CMOS is presented by replacing CMOS passive switchs in switched-line type phase shifter with Common Gate Amplifier(bidirectional amplifier). Bidirectional active phase shifter is composed of bidirectional amplifier blocks and passive delay line network blocks. The suitable topology of bidirectional amplifier block is CGA(Common Gate Amplifier) topology and matching circuits of input and output are symmetrical due to design same characteristic of it's forward and reverse way. The direction(forward and reverse way) and amplitude of amplification can be controlled by only one bias voltage($V_{DS}$) using combination bias circuit. And passive delay line network blocks are composed of microstrip line. An 1-bit phase shifter is fabricated by Dongbu HiTek 1P8M 130-nm CMOS technology and simulation results present -3 dB average insertion loss and respectively 90 degree and 180 degree phase shift at 60 GHz.