• Title/Summary/Keyword: Shielding Device

Search Result 113, Processing Time 0.031 seconds

Boron Nit ride Nanotube Synthesis and Applications (보론 나이트라이드 나노튜브 합성 및 응용기술)

  • Cho, Hyun Jin;Kim, Jun Hee;Kim, Myung Jong
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.19-23
    • /
    • 2016
  • BNNTs (Boron nitride nanotubes) is an analogue of CNTs (Carbon Nanotubes) in terms of lattice structure. In BNNTs, a boron atom forms sp2 hybridized bonding with three nitrogen atoms, and so does a nitrogen with three boron atoms in the honeycomb structure. Its innovative properties, such as high thermal conductivity, neutron shielding capability, superb oxidation resistance at $900^{\circ}C$, excellent chemical resistance, and superior mechanical properties are advantageous for a wide range of applications, especially for electric device packages, neutron shielding, protective coating materials, and functional composites. In this paper, boron nitride nanotube synthesis, properties and application are reviewed.

Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

  • Hwang, S.M.;Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, K.;Lee, S.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.20-23
    • /
    • 2013
  • For sensitive measurements of micro-Tesla nuclear magnetic resonance (${\mu}T$-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 $fT/{\surd}Hz$, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise ${\mu}T$-NMR experiments.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Development of harmful ultraviolet blocking transparent flexible device using TiO2-x thin film process (TiO2-x 산화물 박막공정을 이용한 유해자외선차단 투명유연소재개발)

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In this study, the development of transparent UV blocking material using $TiO_{2-x}$ oxide thin film process was developed. A process technology is related to a process technology for making a sample with ultraviolet-shielding property of visible light transmittance of 78 % or more (total light transmittance at 550 nm) and of a UV cut-off characteristic of more than 95 % at 315 nm in ultraviolet wavelength band. In this study, it is possible to establish a flexible device process condition of high performance ultraviolet (UV) shielding thin film, to design mixed type of transparent flexible device with heterogeneous characteristics and to formulate composite deposition technology, according to various market demands. Establishment of actual roll-to-roll continuous process and equipment and process technology will affect related industries greatly.

Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance (P-Emitter의 길이, 구조가 Asymmetric SiC MOSFET 소자 성능에 미치는 영향)

  • Kim, Dong-Hyeon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.83-87
    • /
    • 2020
  • In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.

A Study on the Double Gap Blocking Device for the Improvement of Fire Resistance and Airtightness of Steel Door (강철재 도어의 내화, 기밀성 향상을 위한 이중틈새 차단장치에 관한 연구)

  • Lee, Joo-Won;Lim, Bo-Hyuk;Cho, Sung-Kwon;Lee, Hae-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.147-148
    • /
    • 2023
  • Steel doors, which are common in general buildings, do not seal the gap between the door and the floor, so drafts, noise, dust, and lights flow from the outside, and shielding devices are installed in various materials and methods, such as adding magnetic gate paper to the side of the door or installing a gasket under the door, but performance is limited. Accordingly, in order to fundamentally solve these problems, we researched and developed a double gap blocking device that can improve fire resistance and airtightness performance in steel doors. Unlike general products, the double gap blocking device has the advantage of maximizing airtight performance by forming an air layer in the center when the door is closed, as well as greatly improving the fire resistance performance, which is the basic performance of the fire door.

  • PDF

Development of Patient-Immobilizing Device for Total Body Irradiation (TBI) (전신 방사선치료(Total Body Irradiation, TBI)를 위한 한국인에 맞는 환자 고정장치에 관한 연구)

  • 김명세
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.114-119
    • /
    • 2002
  • A immobilizing device that is essential for correct lung and lens shielding with homogenous dose distribution in fractionated total body irradiation was developed and it's efficiency was evaluated. The main frame was made of stainless steel bar (5 cm in diameter) to withstand up to 230 cm in height and 100 kg in weight to prevent any injury even in unconsciousness condition. The saddle was designed to adjust the body weight and hight of standing patients. Chest and back supporter were made of 1 cm acryl which could fix the lung block and cassette holder. Leather and sponge pedding were used for head rest to keep patients comfortable. The device was strongly fixed by specially designed bolts on the bottom panel which was made of 1 cm stainless steel and 10 cm thick wooden board. Precise manipulation ($\pm$2 mm) was possible by upper two pulleys and side handles. Average four minutes twenty five seconds were needed for exact setting in fractionated TBI. No significant difference of lung block location on repeated verification films was confirmed and relatively homogeneous dose distribution was measured in rando phantom experiments and patient treatments ($\pm$5%). This immobilizing device was very efficient to keep correct position of patients, which is essential for better result and less complication in fractionated TBI.

  • PDF

A study for CD stud welding of Magnesium alloy for electric device case (전자기기 케이스를 위한 마그네슘 판재 스터드 용접 기술에 관한 연구)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Choe, Sang-Un
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Magnesium sheet used in electrical device due to mobility and EMF shielding characteristics. Magnesium case by press forming was advantageous compare with conventional die casting process, because of its thin gauge of wall and surface quality. But it need to makes the boss to fix inner part or assemble the case. CD stud welding was effective way for joining the boss to the thin gauge case of the electrical devices. In this study, we investigated the performances of the magnesium boss welder To measure the process parameters such as the force and the weld current, we design the monitoring system for CD stud welding. We test the characteristics of CD stud welding for AZ31 sheets at some variables. Finally we select the optimum welding range of magnesium sheets in CD stud welding process.

  • PDF

A Study on the Safety of a Screening X-ray Laboratory Using Containers in accordance with the COVID 19 Outbreak (COVID 19 유행에 따른 컨테이너를 이용한 선별 X-선 검사실의 안전성에 대한 고찰)

  • Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.425-431
    • /
    • 2020
  • When a radiation generating device is installed in an export container due to COVID-19, the purpose of this study was to measure the space dose in the radiation room and to study the effectiveness of the shielding wall in the laboratory. Air dose measurement method was set behind the X-ray tube, 50 cm, 100 cm, 200 cm, and measured 12 locations. The dose values before and after the use of the movable radiation shielding wall were compared by measuring 3 locations behind the X-ray tube using the movable radiation shielding wall. The measured values were 50 cm on the left behind the X-ray tube: 1.446 μSv, behind the X-ray tube: 0.545 μSv, and 50 cm on the right behind the X-ray tube: 1.466 μSv. Measurements behind the radiation barrier were 0.190 μSv, 0.204 μSv, and 0.191 μSv. As a result of performing the corresponding sample t test of the average value according to the use of movable barrier walls, p <0.001 was found. As a result of the actual measurement, the medical exposure of the examiner due to the shielding wall in the laboratory decreased to 82.3%. In order to reduce occupational exposure in screening radiological laboratories, it is recommended that sufficient separation from radiation sources and the use of shielding walls are recommended.