• Title/Summary/Keyword: Shewhart control chart

Search Result 87, Processing Time 0.026 seconds

Resizing effect of image and ROI in using control charts to monitor image data (이미지 데이터를 모니터링하는 관리도에서 이미지와 ROI 크기 조정의 영향)

  • Lee, JuHyoung;Yoon, Hyeonguk;Lee, Sungmin;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.487-501
    • /
    • 2017
  • A machine vision system (MVS) is a computer system that utilizes one or more image-capturing devices to provide image data for analysis and interpretation. Recently there have been a number of industrial- and medical-device applications where control charts have been proposed for use with image data. The use of image-based control charting is somewhat different from traditional control charting applications, and these differences can be attributed to several factors, such as the type of data monitored and how the control charts are applied. In this paper, we investigate the adjustment effect of image size and region of interest (ROI) size, when we use control charts to monitor grayscale image data in industry.

Robust determination of control parameters in K chart with respect to data structures (데이터 구조에 강건한 K 관리도의 관리 모수 결정)

  • Park, Ingkeun;Lee, Sungim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1353-1366
    • /
    • 2015
  • These days Shewhart control chart for evaluating stability of the process is widely used in various field. But it must follow strict assumption of distribution. In real-life problems, this assumption is often violated when many quality characteristics follow non-normal distribution. Moreover, it is more serious in multivariate quality characteristics. To overcome this problem, many researchers have studied the non-parametric control charts. Recently, SVDD (Support Vector Data Description) control chart based on RBF (Radial Basis Function) Kernel, which is called K-chart, determines description of data region on in-control process and is used in various field. But it is important to select kernel parameter or etc. in order to apply the K-chart and they must be predetermined. For this, many researchers use grid search for optimizing parameters. But it has some problems such as selecting search range, calculating cost and time, etc. In this paper, we research the efficiency of selecting parameter regions as data structure vary via simulation study and propose a new method for determining parameters so that it can be easily used and discuss a robust choice of parameters for various data structures. In addition, we apply it on the real example and evaluate its performance.

A Control Chart Method Using Quartiles for Asymmetric Distributed Processes (비대칭 분포를 따르는 공정에서 사분위수를 이용한 관리도법)

  • Park Sung-Hyun;Park Hee-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2006
  • This paper proposes a simple control chart method which can be practically used for asymmetric process data where the distribution is unknown. If we use the Shewhart type control charts which are based on normality assumption for the asymmetric process data, the type I error could increase as the asymmetry increases and the effectiveness of control chart to control variation decreases. To solve such problems, this paper suggests to calculate the control limits based on the quartiles. If we obtain the control limits by such quartile method, the type I error could decrease and it looks much more practical for asymmetric distributed process data.

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

Comparisons of Multivariate Quality Control Charts by the Use of Various Correlation Structures

  • Choi, Sung-Woon;Lee, Sang-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.123-146
    • /
    • 1995
  • Several quality control schemes have been extensively compared using multivariate normal data sets simulated with various correlation structures. They include multiple univariate CUSUM charts, multivariate EWMA charts, multivariate CUSUM charts and Shewhart T$^{3}$ chart. This paper considers a new approach of the multivariate EWMA chart, in which the smoothing matrix has full elements instead of only diagonal elements. Performance of the schemes is measured by avaerage run length (ARL), coefficient of variation of run length (CVRL) and rank in order of signaling of off-target shifts in the process mean vector. The schemes are also compared by noncentrality parameter. The multiple univariate CUSUM charts are generally affected by the correlation structure. The multivariate EWMA charts provide better ARL performance. Especially, the new EWMA chart shows remarkable results in small shifts.

  • PDF

Multivariate Control Charts for Autocorrelated Process

  • Cho, Gyo-Young;Park, Mi-Ra
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2003
  • In this paper, we propose Shewhart control chart and EWMA control chart using the autocorrelated data which are common in chemical and process industries and lead to increase the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and simulation is conducted to investigate the performances of the proposed control charts.

  • PDF

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

Economic Design of Variable Sampling Interval X Control Chart Using a Surrogate Variable (대용변수를 이용한 가변형 부분군 채취 간격 X 관리도의 경제적 설계)

  • Lee, Tae-Hoon;Lee, Jooho;Lee, Minkoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • In many cases, an $\bar{X}$ control chart which is based on the performance variable is used in industrial fields. However, if the performance variable is too costly or impossible to measure and a less expensive surrogate variable is available, the process may be more efficiently controlled using surrogate variables. In this paper, we propose a model for the economic design of a VSI (Variable Sampling Interval) $\bar{X}$ control chart using a surrogate variable that is linearly correlated with the performance variable. The total average profit model is constructed, which involves the profit per cycle time, the cost of sampling and testing, the cost of detecting and eliminating an assignable cause, and the cost associated with production during out-of-control state. The VSI $\bar{X}$ control charts using surrogate variables are expected to be superior to the Shewhart FSI (Fixed Sampling Interval) $\bar{X}$ control charts using surrogate variables with respect to the expected profit per unit cycle time from economic viewpoint.

Estimation of the Change Point in VSS X Control Charts

  • Lee, Jaeheon;Park, Changsoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.825-833
    • /
    • 2003
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a maximum likelihood estimator of the process change point when a Shewhart $\bar{X}$ chart with variable sample size (VSS) scheme signals a change in the process mean. Also we build a confidence interval for the process change point by using the likelihood function.

Statistical Analysis of Count Rate Data for On-line Seawater Radioactivity Monitoring

  • Lee, Dong-Myung;Cong, Binh Do;Lee, Jun-Ho;Yeo, In-Young;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.64-71
    • /
    • 2019
  • Background: It is very difficult to distinguish between a radioactive contamination source and background radiation from natural radionuclides in the marine environment by means of online monitoring system. The objective of this study was to investigate a statistical process for triggering abnormal level of count rate data measured from our on-line seawater radioactivity monitoring. Materials and Methods: Count rate data sets in time series were collected from 9 monitoring posts. All of the count rate data were measured every 15 minutes from the region of interest (ROI) for $^{137}Cs$ ($E_{\gamma}=661.6keV$) on the gamma-ray energy spectrum. The Shewhart ($3{\sigma}$), CUSUM, and Bayesian S-R control chart methods were evaluated and the comparative analysis of determination methods for count rate data was carried out in terms of the false positive incidence rate. All statistical algorithms were developed using R Programming by the authors. Results and Discussion: The $3{\sigma}$, CUSUM, and S-R analyses resulted in the average false positive incidence rate of $0.164{\pm}0.047%$, $0.064{\pm}0.0367%$, and $0.030{\pm}0.018%$, respectively. The S-R method has a lower value than that of the $3{\sigma}$ and CUSUM method, because the Bayesian S-R method use the information to evaluate a posterior distribution, even though the CUSUM control chart accumulate information from recent data points. As the result of comparison between net count rate and gross count rate measured in time series all the year at a monitoring post using the $3{\sigma}$ control charts, the two methods resulted in the false positive incidence rate of 0.142% and 0.219%, respectively. Conclusion: Bayesian S-R and CUSUM control charts are better suited for on-line seawater radioactivity monitoring with an count rate data in time series than $3{\sigma}$ control chart. However, it requires a continuous increasing trend to differentiate between a false positive and actual radioactive contamination. For the determination of count rate, the net count method is better than the gross count method because of relatively a small variation in the data points.