• Title/Summary/Keyword: Sheet-pile wall

Search Result 44, Processing Time 0.02 seconds

Simplified Formulae for Free Earth Supported Anchored Sheet-Pile Wall (앵커식 자유지지 널말뚝벽의 설계용 간편식)

  • Kim, Khi-Woong;Kwon, Min-Seok;Paik, Young-Shik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Sheet piles are often used to build continuous walls for the waterfront structures, and also used for some temporary structures, such as the braced cuts. Sheet pile walls may be divided into two basic categories that is cantilever and anchored. Stock(1992) developed an expedient format for determining the depth, maximum bending moment and anchor force of sheet pile wall for cantilever and free earth supported anchored wall. But, that is useful only in case that water table exists above the dredge line. In this study, a simplified formulae was developed for the design of the anchored free earth supported sheet pile wall both in sand and clay by solving the derived equations and regression analysis. It can be used whether the ground water table is above or under the dredge line.

  • PDF

Analysis of Permeability Characteristic for Z type Steel Sheet Pile by Field Test (현장시험 시공을 통한 Z형 강널말뚝의 현장차수특성 분석)

  • 이용수;정하익;홍승서;이광범;김상진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.325-330
    • /
    • 2000
  • In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.

  • PDF

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.

Stability Analysis of Sheet Pile Reinforced with Strut (버팀대로 보강된 널말뚝의 안정해석)

  • Kim, Ji Hoon;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

The Use of Reliability-based Approach to Design Anchored Sheet Pile Walls (신뢰성에 근거한 앵커 널말뚝의 설계방안 연구)

  • Kim, Hyung-Bae;Lee, Seoung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2002
  • In this study, a reliability-based design (RBD) procedure for determining design values fur anchored sheet pile wall is proposed considering overturning about the anchor point as the major failure mode. In this design procedure, the depth of embedment of the sheet pile wall is logically chosen in accordance with degrees of uncertainties of design input parameters using approximate probabilistic computation methods. These methods have been successfully used in the geotechnical engineering requiring neither understandings of complex probabilistic theories nor efforts to prepare more data. It was investigated that the design results by the proposed method were compatible with those by commonly used deterministic design methods. Additionally, in an effort to investigate the effects of changes in the degree of uncertainties of major design variables on the design results of the sheet pile wall, a sensitivity analysis was peformed.

Case Study for the Stability of Temporary Shoring Facilities at Inchon International Airport (가시설 안정성 검토에 관한 인천국제공항 시공 사례 연구)

  • 최인걸;조현모;류승철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.97-104
    • /
    • 1999
  • This case study has been prepared to provide the practical data about construction of temporary shoring facilities (i.e. braced sheet pile excavation) and to utilize the case study information effectively for design and construction of future facilities. This case study includes information such as 1) installing measurement devices to monitor the deformation of the sheet pile walls and the subsoil in the vicinity after establishing the criteria for the sheet pile deflection; 2) monitoring the actual movement of the temporary facility after setting up the survey control standard (due to the movement of the temporary facility) : 3) inspecting the suitability of the temporary facility construction: and 4) analyzing and studying the result of the tension test after installing ground anchors.

  • PDF