• Title/Summary/Keyword: Sheet Resistance

Search Result 1,236, Processing Time 0.03 seconds

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Studies on Photocatalytic Thin Films($TiO_2$, TiO-N) Manufactured by DC Magnetron Sputtering Method and it's Characteristics for Removal of Pollutants (DC 마그네트론 스퍼터링법을 이용한 광촉매박막($TiO_2$, TiO-N)제조 및 오염물질 제거에 관한 연구)

  • Jeong, Weon-Sang;Park, Sang-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • [ $TiO_2$ ] was deposited by DC magnetron sputtering on glass surface under various sputtering parameters such as discharge power($0.6{\sim}5.2\;kW$, substrate temperature($R.T{\sim}350^{\circ}C$), Ar and $O_2$ flow ratio with $0{\sim}50\;sccm$($Ar+O_2$ 90 sccm) and about 1 mtorr of pressure. TiO-N thin film was prepared under same sputtering conditions for $TiO_2$ thin film except flow ratio($Ar+O_2+N_2$ 90 sccm). The sheet resistance of thin films deposited under these parameters was measured to analyze electronic characteristic and thin film's thickness(${\alpha}$-step), surface roughness(AFM) and formation construction(FE-SEM, XRD) were also measured to draw optimal sputtering parameters. In order to evaluate photo-activity of thin film($TiO_2$, TiO-N) made in optimal parameters for removal of pollutants, toluene among VOCs and Suncion Yellow among reactive dyes were chosen to probe organic compounds for photo-degradation. It was shown that the photo-catalytic thin films had a significant photo-activation for the chosen contaminants and especially TiO-N thin film showed maximum efficiency of 33% for toluene(5 ppm) removal in visible-light range.

Design and characterization of conductive transparent filter using [TiO2|Ti|Ag|TiO2] multilayer ([TiO2|Ti|Ag|TiO2] 다층구조를 이용한 전도성 투과필터의 설계 및 특성분석)

  • Lee, Seung-Hyu;Lee, Jang-Hoon;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • We have designed conductive transparent filters using a low-emissivity coating such as [dielectric|Ag|dielectric] for display applications. The design is the repetition of [$TiO_{2}$|Ti|Ag |$TiO_{2}$] to increase the transmittance in the visible and decrease the transmittance in the near IR. The conductive transparent filters are deposited by a radio frequency(RF) magnetron sputtering system. The optical, structural and electrical properties of the filters were investigated and the optical spectra are compared with simulated spectra. The thickness of the deposited Ag films is above 13 ㎚ to increase the conductivity and that of $TiO_{2}$ films is 24 ㎚ to increase the transmittance in the visible range. Ti blockers are employed to prevent the Ag films from being oxidized by an oxygen gas during the reactive sputtering process. Also, it is shown that the thicker Ti film is necessary as the period increases. Finally, a filter with repetition of the basic structure three times shows the better cut-off near infrared(NIR) and the sheet resistance as low as 2Ω/□ which is enough to shield an unnecessary electromagnetic waves for a display panel.

Growth Behavior and Thermal Stability of CoSi2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition (반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi2 layer의 성장거동과 열적 안정성에 관한 연구)

  • Kim, Sun-Il;Lee, Heui-Seung;Park, Jong-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Uniform polycrystalline $CoSi_2$layers have been grown in situ on a polycrystalline Si substrate at temperature near $625^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η$^{5}$ -C$_{5}$ H$_{5}$ )(CO)$_2$. The growth behavior and thermal stability of $CoSi_2$layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi$_2$was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial $CoSi_2$layer was grown from the discrete $CoSi_2$plate, where the orientation of the$ CoSi_2$layer is same as the orientation of polycrystalline Si grain. The interface between $CoSi_2$layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform $CoSi_2$layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of $CoSi_2$layer was controlled by diffusion of cobalt. The thermal stability of $CoSi_2$layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from $600^{\circ}C$ to $900^{\circ}C$. The $CoSi_2$layer was degraded at $900^{\circ}C$. Inserting a TiN interlayer between polycrystalline Si and $_CoSi2$layers improved the thermal stability of $CoSi_2$layer up to $900^{\circ}C$ due to the suppression of the Co diffusion.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films (ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1285-1290
    • /
    • 2017
  • We prepared ITZO thin films with various thicknesses on glass substrates using RF magnetron sputtering and investigated electrical, optical and structural properties of the thin film. Sheet resistance of ITZO thin film showed a decreasing trend on the increase of film thickness, but its resistivity exhibited a substantially constant value of $5.06{\pm}1.23{\times}10^{-4}{\Omega}-cm$. Transmittance of ITZO thin film moved to the long-wavelength with the increase of film thickness. Figure of merit in a visible light and an absorption area of P3HT:PCBM organic active layer of the 360nm-thick IZTO thin film was $8.21{\times}10^{-3}{\Omega}^{-1}$ and $9.29{\times}10^{-3}{\Omega}^{-1}$, respectively. Through XRD and AFM measurements, it was confirmed that all the ITZO thin films have amorphous structure and the surface roughness of films are very smooth in the range of 0.561 to 0.263 nm. In this study, it was found that amorphous ITZO thin film is a very promising material for organic solar cell.