• Title/Summary/Keyword: Sheet Model

Search Result 798, Processing Time 0.025 seconds

A Study on the Development of Sensor-Based Smart Wappen System -Focus on UV Sensor and Gas Sensor-

  • Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.22 no.6
    • /
    • pp.94-104
    • /
    • 2018
  • The objective of this study was to develop a wearable systems that protect users, based on sensors that are easy to use, from accidents caused by harmful gases in the operator's poor working environment or the risk of ultraviolet rays during outdoor activities. By developing smart wappen with Light Emitting Diode (LED) light alarm function including UV sensor and gas sensor and central processing unit, systems that are applied to daily wear and work clothes to explore the possibility of user-centered, harmful environment monitoring products in real time were proposed. Each sensor was applied to sportswear and work clothes and the wappen system consisted of lightweight and thin form as a whole. Wappen to cover the device had one sheet cover on the front and another cover from the inside to form a sandwich like formation. Wappen was made in the same form as regular clothes that doesn't damage the exterior then a removable wappen system was developed using Velcro and snap methods to enable the separation of device or the exchange of batteries. De-adhesion method can occur in two ways, from the outside and from the inside, so the design is selected depending on the application. This study shows the significance of the development of sensor-based smart clothing, in that it presented a universal model for users.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

Using ICF model Rehabilitation Management Case Report on Patients with Cerebellum Disorder (ICF 모델을 적용한 소뇌손상환자의 재활관리 사례보고)

  • Kong, Sun-Woong;Kim, Ji-Sun;Bae, Si-Jeol;Hwang, Ki-Kyeong
    • PNF and Movement
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • Purpose : Currently, ICF to describe the functions and disability in the world has been used as a universal language. ICF tools based on ICF, the rehabilitation management of clients have been developed to be efficient. This study was designed to describe clinical decision for functional goal of clients to used ICF tools. Methods : In the following the utilization of all developed ICF tools will be described within a case example of a 53-year-old women, suffering from cerebellum disorder. As problems in the subject's functional activities was difficulties in changes sitting postures, standing postures and maintaining standing postures. Activity limitation was determined change sitting, standing posture as a goal through discussion with the patient. Results : After setting the identified problems as the purpose of intervention through the assessment, we find out the outcomes using the ICF evaluation display. Consequently, with functional activities limitation that discovered from assessment(categorical profile, assessment sheet), sitting postures to standing postures and maintaining standing postures were improved. Conclusion : This study was showed ICF tools based on Rehab-cycle for the patient's functional goals clinical practice. The future study, the ICF in clinical practical tools for effective use will require more attempt.

The Selection of Plants for indoor garden and the Environmental improvement effects

  • Choi, Jae-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • In this study, we built a mock-up of an indoor garden for private use and vertical gardens were installed on the walls of this indoor garden model. The purpose of this study is to examine the types of plants for best fit for growth and nurture in vertical garden and to identify the effects of indoor air quality improvement by these plants. As the result of the experiment, 22 species out of 32 species previously used for indoor garden was selected to be suitable for vertical gardens of a personal indoor garden. 10 species were found to be inappropriate for a personal indoor garden in terms of ornamental value, growth status and maintenance. The effect of plants on reducing CO2 has been proven by many studies. Also, through photosynthesis, plants combine CO2 with water and produce sugars and O2 (oxygen). Everyone accepts this fact. In nature, the production of oxygen is so important that without plants we would soon use it up and die. From the NASA Fact Sheet we know that air contains 20.95% O2 and 0.04% CO2. If you had enough plants in a room to use up all of the all of CO2 and convert it to oxygen, the oxygen levels would increase from 20.95% to 21%. This increase is difficult to detect and would have no effect on humans.

YOLO based Optical Music Recognition and Virtual Reality Content Creation Method (YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법)

  • Oh, Kyeongmin;Hong, Yoseop;Baek, Geonyeong;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.80-90
    • /
    • 2021
  • Using optical music recognition technology based on deep learning, we propose to apply the results derived to VR games. To detect the music objects in the music sheet, the deep learning model used YOLO v5, and Hough transform was employed to detect undetected objects, modifying the size of the staff. It analyzes and uses BPM, maximum number of combos, and musical notes in VR games using output result files, and prevents the backlog of notes through Object Pooling technology for resource management. In this paper, VR games can be produced with music elements derived from optical music recognition technology to expand the utilization of optical music recognition along with providing VR contents.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method (포텐셜을 기저로한 패널법에 의한 프로펠러의 정상 성능 해석)

  • Kim, Young-Gi;Lee, Jin-Tae;Lee, Chang-Sup;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 1993
  • This paper describes a potential-based panel method for the prediction of steday performance of a marine propeller operating in a uniform oncoming flow. An integral equation with unknown dipole strengths is formulated by distributing the normal dipoles and/or sources on the blade and hub surfaces and the wake sheet, and is solved numerically upon discretization. A hyperboloidal panel has been adopted to compute the potential induced by a normal dipole on a non-planar quadrilateral panel. The Kutta condition is satisfied by iteratively annulling the pressure jumps at the trailing edge. Extensive convergence tests are carried out, and the influence of the wake model upon performance is studied. Predicted performance is shown to correlate well with the experiments.

  • PDF

DC and impulse electrical breakdown characteristics of LPP in liquid nitrogen for a HTS DC cable (고온초전도 DC케이블용 LPP의 액체질소 중 DC 및 임펄스 절연파괴 특성)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Min, Chi-Hyun;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.52-56
    • /
    • 2007
  • A high temperature superconducting (HTS) DC cable is ideal for transmitting large blocks of electrical power over a long distance. However, it must be designed to operate reliably within the constraints of the electrical systems. Therefore, a study of the electrical insulation is important to develop a HTS DC cable because it is operated in a cryogenic high voltage environment. This paper discusses the dielectric constructions of the cable and summarizes the experimental results on the DC and impulse dielectric characteristics of the insulation material. in sheet form and mini-model cable configuration. This shows how to design such insulation to be operated reliably. These studies are essential for the insulation design of a HTS DC cable operated in cryogenic environment.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Evaluation of Wear in Inconel 600 Tools in Superplastic Forming of Ti6Al4V Sheet (Ti6Al4V 판재의 초소성 성형공정에서 Inconel 600 금형 마모 평가)

  • J. Bang;J. Song;M. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.112-117
    • /
    • 2024
  • In this study, the friction and wear characteristics of Inconel 600 in the superplastic forming process of Ti6Al4V were evaluated through pin-on-disc tests. To achieve an efficient and systematic experimental design, the Taguchi method was employed. The wear track of the Inconel 600 pin showed scratches in the sliding contact direction, confirming that the wear mechanism is abrasive wear. Through sensitivity analysis such as ANOVA and Main effects, it was confirmed that both normal force and sliding distance have a significant impact on the wear. Changes in sliding velocity and distance did not affect the friction coefficient, which remained relatively constant at approximately 0.380. The wear prediction model for Inconel 600 in the superplastic forming of Ti6Al4V was constructed, which can be utilized as a guideline for the prediction and management of tool wear.