• Title/Summary/Keyword: Shear-type Damper

검색결과 51건 처리시간 0.026초

인방형 강재댐퍼의 구조성능에 대한 실험적 연구 (Experimental Evaluation of the Seismic Performance for Lintel Beam Type Steel Damper)

  • 노경민;김민숙;이영학
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.77-84
    • /
    • 2017
  • As an alternative to coupling beam in shear wall system, application of the damper which can dissipate energy is increasing. In this study, lintel beam type steel damper which is simple to construct and change depending on design load was proposed. Cyclic loading test was conducted to compare reinforced concrete coupling beam and lintel beam type steel damper. The test results showed that lintel beam type steel damper has higher initial stiffness and energy dissipation capacity than reinforced concrete coupling beam.

Exo-type 감쇠시스템의 강성비와 감쇠장치의 항복비에 따른 라멘조 건물의 제진효과 (Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio)

  • 허무원;이상현;천영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권5호
    • /
    • pp.38-44
    • /
    • 2015
  • 본 논문에서는 효과적인 제진설계를 구현하기 위한 설계기술 개발의 일환으로 최근 제안된 Exo-type 감쇠시스템을 활용하여 15층과 20층의 연구 대상 건물을 대상으로 감쇠시스템의 최적 강성비와 적용된 감쇠장치의 최적 항복비에 따른 철근콘크리트 라멘조 건물의 제진 효과를 검토해 보았다. 해석결과, Exo-type 감쇠시스템을 3개층 적용 시에는 대상 건물 15층과 20층 모두 밑면전단력과 최상층 최대응답변위 감소라는 관점에서 유효한 제진효과를 얻기 위해서는 Exo-type 감쇠시스템과 대상 건물의 강성비는 7.0 이상 확보를 하여야 하며, 감쇠시스템에 적용된 감쇠장치의 항복비는 대상 건물의 층전단력의 약 8.0% 이상 확보할 필요가 있는 것으로 나타났다. 또한, Exo-type 감쇠시스템을 5개 층 적용 시에는 대상 건물 15층과 20층 모두 Exo-type 감쇠시스템과 대상 건물의 강성비는 2.5 이상 확보 하여야 하며, 감쇠시스템에 적용된 감쇠장치의 대상 건물의 층전단력의 약 3.5%이상 확보할 필요가 있는 것으로 나타났다.

전단형 MR 댐퍼를 이용한 케이블 교량의 실시간 진동제어-파워 모델 및 리야프노브 제어 중심으로 (Real-time Vibration Control of Cable Bridges using a Shear-type MR Damper-Focusing on Power Model and Lyapunov Control)

  • 허광희;이진옥;전승곤;김충길;전준용
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.215-226
    • /
    • 2017
  • In this paper, an experimental study was carried out for vibration control of cable bridges with structurally flexible characteristics. For the experiment on vibration control, a model bridge was constructed by reducing the Seohae Grand Bridge and the shear type MR damper was designed using the wind load response measured at Seohae Grand Bridge. The shear type MR damper was installed in the vertical direction at the middle span of the model bridge, and dynamic modeling was performed using the power model. The tests of the vibration control were carried out by non-control, passive on/off control and Lyapunov control method on model bridge with scaled wind load response. The performance of the vibration control was evaluated by calculating absolute maximum displacement, RMS displacement, absolute maximum acceleration, RMS acceleration, and size of applied power using the response (displacement, acceleration, etc.) from the model bridge. As a result, the power model was effective in simulating the nonlinear behavior of the MR damper, and the Lyapunov control method using the MR damper was able to control the vibration of the structure and reduce the size of the power supply.

보단부 회전형감쇠기를 이용한 대형구조물의 진동제어 (Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper)

  • 이상현;우성식;정란;조승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF

꺽쇠형 강재 댐퍼의 록킹 거동 (Rocking Behavior of Clamped Shape Metallic Damper)

  • 이현호
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.

더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가 (Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper)

  • 허무원;천영수;황재승;김종호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.10-17
    • /
    • 2015
  • 본 연구에서는 내진설계 이전에 지어진 학교 건물을 대상으로 내진보강효과를 알아보기 위하여 벽체로 지지되는 강재이력형 감쇠장치를 설치하여 기존 비내진 설계된 보강 RC골조 실험결과와 비교 분석하였다. 실험결과, 비내진 설계된 실험체는 좌 우측 기둥의 상 하부에 피해가 집중되면서 급격한 강도저하와 함께 취성적인 전단파괴의 양상을 나타낸 반면, 더블 I형 감쇠장치를 보강한 실험체는 감쇠장치 보강으로 강도 및 강성의 증가와 함께 탄소성 거동을 보이면서 에너지 흡수 능력이 큰 타원형의 이력특성을 나타내었다. 또한, 두 실험체의 강성저하를 비교한 결과 더블 I형 감쇠장치를 보강한 실험체가 강성저하를 방지하는데도 효과적임을 알 수 있었다. 에너지소산능력도 더블 I형 감쇠장치를 보강한 실험체가 비보강 실험체에 비해 약 3.5배의 향상된 결과를 나타내었다. 이러한 에너지소산능력의 증진은 내력과 변형 능력의 증진에 따른 결과라고 사료된다.

보단부 회전형감쇠기를 이용한 건축구조물의 내진성능보강 (Seismic Performance Enhancement of Building Structures with Beam-end Rotation Type Dampers)

  • 우성식;이상현
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.589-597
    • /
    • 2008
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module(VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

전단형 MR 댐퍼 및 Clipped-optimal 제어알고리즘을 이용한 사장교의 실시간 준능동 진동제어 (Real-time Semi-active Vibration Control in Cable-stayed Bridges by Shear-type MR damper and Clipped-optimal Control Algorithm)

  • 허광희;전준용;전승곤
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.113-123
    • /
    • 2016
  • This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.

EMRF를 이용한 개선된 Semi-Active Damper 개발 (Development of Improved Semi-Active Damper Using EMRF)

  • 전승곤
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.149-156
    • /
    • 2022
  • Magneto-Rheological Fluid (MRF) is a functional fluid in which flow characteristics change into magnetic force due to its magnetic particles. When the semi-active control device does not use MRF for a long time, precipitation of magnetic particles and abnormal control force occur. Thus, Electro Magneto-Rheological Fluid (EMRF), which improves the precipitation of magnetic particles for MRF and exhibits existing control performance, was developed in this study. First, the optimal mix proportion ratio was selected by conducting a precipitation experiment and a controlled force test by varying the content of grease based on the existing MRF components. Also, EMRF was applied to the shear-type damper to evaluate the control performance when applied to the control device. The cylinder-type damper was developed to apply to the structure, and control performance evaluation was conducted. The result confirmed that the precipitation of the magnetic particles was improved, while the damper using EMRF exhibited excellent control performance.

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.