• Title/Summary/Keyword: Shear connectors

Search Result 287, Processing Time 0.026 seconds

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.

The Effect of Composite Ratio and Wall Thickness on the Shear Behavior of Composite Basement Wall (합성율과 벽체두께가 합성지하벽의 전단거동에 미치는 영향)

  • Seo, Soo-Yeon;Kim, Seong-Soo;Yoon, Yong-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • When doing underground excavation works for the purpose of constructing large underground structures for a building in the limited space in downtown area, the stability of the adjacent ground must be top priority, and to accomplish this, it is essential to review the retaining wall construction carefully. H-Pile, which has been mainly used as a stress-carrying material in temporary earth-retaining structures, is most likely to be abandoned after completion of the works for the basement exterior wall in relation to contiguous bored piles, so it will result in a waste of material. To improve this situation, Basement Composite Wall where H-Pile and basement wall are compounded, has been developed. This wall is being used most frequently in many local construction sites. In this study, five specimens are made in order to evaluate the shear resistance of the basement composite wall and tested. Test parameter is the composition ratio and wall thickness according to shear connectors. Test result shows that the shear strength is improved when the composite ratio is increased but the magnitude is not much. A formula, which considers the contribution of concrete, web of H-pile as well as flange' effect in calculation of shear strength of composite basement wall, is suggested and used to calculation of the strength of specimens. It is found that there is a good co-relation between test result and the calculated one by the formula.

Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor (단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가)

  • Kim, Mun-Gil;Chun, Sung-Chul;Kim, Young-Ho;Sim, Hye-Jung;Bae, Min-Seo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • A shear strength model for the high-shear ring anchor consisting of a steel ring and a rod was developed based on the shear tests on single high-shear ring anchors. The shear strength was found to be proportional to $f_{ck}{^{0.75}}$ which is a similar characteristic to the strength of shear connectors used in composite structures. The effects of the compressive strength of concrete, edge distance, and embedment length of rod are included in the proposed model. Comparison with 22 tests shows that the average and the coefficient of variation of test-to-prediction ratios are 1.01 and 7.57%, respectively. Push tests on the specimens having four high-shear ring anchors at each face were conducted and the measured shear strengths were compared with the predictions by the proposed model. For the specimen with an edge distance of 100 mm, a splitting failure occurred and for the specimens with an edge distance of 150 mm, a failure mode mixed with splitting and bearing occurred, which were very similar to the failures of shear tests on single high-shear ring anchors. In case of a splitting failure, the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 400 mm which is four times of the edge distance. In case of a bearing failure, the failure area is less than 150 mm from the center of the anchor and therefore the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 200 mm. The average of the test-to-prediction ratios of Push tests is 98%, which means that the proposed mode can be applied to predict the shear strength of the multiple high-shear rings.

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile (철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가)

  • Kim, Jeong-Hoi;Jung, Hae-Kwang;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

The Composite Effects of Composite Truss using High Strength T-shaped Steel (고강도 T형강을 사용한 합성트러스의 합성효과)

  • Chae, Dae Jin;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.637-645
    • /
    • 2012
  • The composite action in truss beam is generally achieved by providing shear connectors between the steel top chord of the truss and the concrete slab. The composite sections have greater stiffness than the sum of the individual stinesses of the slab and truss. Therefore, steel trusses that act compositely with concrete slabs can carry larger load and are stiffer and less prone to transient vibration. The crack pattern and deflection of the beam of the composte truss were investigated by using of 600MPa class steel in this study. The test results were compared with the results for the noncomposite trusses. Test results were also compared with the results of composite trusses by using of 400MPa class steel. It was ascertained that the case of high strength steel is more efficient compared with the case of SS400 steel for T-shaped steel.