• Title/Summary/Keyword: Shear Strength Parameters

Search Result 803, Processing Time 0.026 seconds

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

New metal connectors developed to improve the shear strength of stone masonry walls

  • Karabork, Turan;Kocak, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.121-135
    • /
    • 2014
  • Stone masonry structures are widely used around the world, but they deteriorate easily, due to low shear strength capacity. Many techniques have been developed to increase the shear strength of stone masonry constructions. The aim of this experimental study was to investigate the performance of stone masonry walls strengthened by metal connectors as an alternative shear reinforcement technique. For this purpose, three new metal connector (clamp) types were developed. The shear strength of the walls was improved by applying these clamps to stone masonry walls. Ten stone masonry walls were structurally tested in diagonal compression. Various parameters regarding the in-plane behavior of strengthening stone masonry walls, including shear strength, failure modes, maximum drift, ductility, and shear modulus, were investigated. Experimentally obtained shear strengths were confirmed by empirical equations. The results of the study suggest that the new clamps developed for the study effectively increased the levels of shear strength and ductility of masonry constructions.

Fuzzy modelling approach for shear strength prediction of RC deep beams

  • Mohammadhassani, Mohammad;Saleh, Aidi MD.;Suhatril, M;Safa, M.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.497-519
    • /
    • 2015
  • This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected from renowned publications on simply supported high strength concrete deep beams. The results show that the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the range of the considered input parameters. ANFIS's results are highly accurate, precise and therefore, more satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder strength ($f_c^{\prime}$) have major influence on the shear strength prediction of deep beams. The parametric study confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and decrease in the shear span to-depth-ratio.

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Evaluation of horizontal shear strength of the shear connectors between precast decks and PSC girders (프리캐스트 바닥판과 PSC 거더 전단연결재의 수평전단강도 평가)

  • Hyun, Byung-Hak;Chung, Chul-Hun;Shim, Chang-Su;Kim, Yung-Jin;Lee, Han-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.240-243
    • /
    • 2004
  • A new shear connection for the application of precast decks to PSC girders was proposed and push-off tests were conducted to evaluate the horizontal shear strength of the shear connection. Major parameters of the tests were connector type, shank area, vertical load, surface condition and bedding height. Judging from the test results, shear strength of the suggested shear connection was proportional to the shank area and yield strength of the connectors and was in inverse proportion to the bedding height. Shear connection with shear key at the surface showed better performance. An empirical equation for the evaluation of the shear strength of the shear connection without considering bond strength was proposed and it showed good correlation with the test results.

  • PDF

The Physical and Shear Strength Properties of the Weathered Limestone Soils in Changsung and Hwasun Area of Chonnam Province, Korea (전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성)

  • 김해경
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.335-344
    • /
    • 2003
  • This study is focused to the physical and shear strength properties of the weathered limestone soils distributed in Changsung and Hwasun area, Chonnam province. Disturbed soil was used as soil samples. To grasp the physical and shear strength properties of weathered limestone soil, specific gravity test, atterberg limit, grain size distribution and direct shear test were conducted in the laboratory. The physical and shear strength properties of the weathered limestone soil in the study areas are as follows. The range of specific gravity (Gs) is 2.78 to 2.80, liquid limits (LL) 37 to 38 (%), plasticity index (PI) 13.7 to 15.4, and soil classification CL. The range of strength parameters by direct shear test (vd, $1.5t/\textrm{m}^3$) is 3.07 to 4.4 ($t/\textrm{m}^2$) of cohesion and 34.8 to $42.4^{\circ}$ of internal friction angle in unsaturated soils. As a result of comparing with the weathered granite soils (Yang, 1997: Mun, 1998: Park, 1998), it is considered that physical properties of the weathered limestone soils in this study are different from the weathered granite soils. On the other hand, internal friction angle of shear parameters is found to be similar.

Determining the shear strength of FRP-RC beams using soft computing and code methods

  • Yavuz, Gunnur
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters.

Shear Strenhth and Ductility of Steel-Fiber Reinforced High Strength Concrete Beams with Shear Confinement (전단보강이 있는 강섬유 보강 고강도 철근콘크리트 보의 전단 및 연상에 관한 연구)

  • 오정근;이광수;권영호;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.53-60
    • /
    • 1990
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams with shear confinement are accomplished to determine their ultimate shear strength including diagonal tension strength. The parameters varied were the shear confinement ratio(Ps), and fiber volume fraction(Vs). Ultimate shear strength increased significantly in steel fiber reinforced concrete beam without shear confinement. In steel- fiber reinforced high strength concrete beams with shear confinement, there is no increase of ultimate shear strength but shows much beneficial effects of Ductility Capacity.

Characteristics of the shear behavior of RC rectangular sectional columns and initial shear strength considering the ratio of longitudinal bars (RC 사각단면 기둥의 전단거동특성과 축방향철근비를 고려한 초기전단강도)

  • Lee, Jong-Seok;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.27-36
    • /
    • 2010
  • It is well known that the shear strength of an RC column subjected to a lateral force decreases with the increase of the displacement ductility of column. This decreasing rate of shear strength is quite dependent on the initial shear strength. Therefore, the evaluation of the initial shear strength is important to predict the shear strength with reasonable accuracy. The shear behavior is complex because many parameters, such as the sectional shape, aspect ratio, axial force, longitudinal bars and ductility, are mutually interactive. In this study, the initial shear strength has been investigated by experiments varying parameters such as the aspect ratios, void ratios, ratio of longitudinal bars and sectional types. A new empirical equation for the initial shear strength, considering the ratio of the longitudinal bars, has been proposed and its validity has been assessed.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.