• Title/Summary/Keyword: Shear Failure

Search Result 2,395, Processing Time 0.024 seconds

Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders

  • Saiidi, M. Saiid;Bush, Anita
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.353-367
    • /
    • 2006
  • Two full-scale, precast, pretensioned box girders were subjected to shear-dominated loading, one under monotonic loads to failure and the other subjected to one-half million cycles of fatigue loads followed by monotonic ultimate loads. The number of cycles was selected to allow for comparison with previous research. The fatigue loads were applied in combination with occasional overloads. In the present study, fatigue loading reduced the shear capacity by only six percent compared to the capacity under monotonic loading. However, previous research on flexure-dominated girders subjected to the same number of repeated loads showed that fatigue loading changed the mode of failure from flexure to shear/flexure and the girder capacity dropped by 14 percent. The comparison of the measured data with calculated shear capacity from five different theoretical methods showed that the ACI code method, the compression field theory, and the modified compression field theory led to reasonable estimates of the shear strength. The truss model led to an overly conservative estimate of the capacity.

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

Strengthening and Ductility Evaluation of Reinforced Concrete Beams Shear-Strengthened by Steel Plates and Glass Fiber Sheets (강판 및 유리섬유쉬트로 전단보강된 철근콘크리트 보의 보강 및 연성 평가)

  • 문상범;오성영;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.691-696
    • /
    • 2000
  • Shear strengthening method by steel plates and fiber reinforced polymer lamination has recently been favorably selected due to its efficiencies of duration and performance. Shear failure being brittle and difficult to predict, reinforced concrete structures must have sufficient capacity to absorb the energy for shear failure and to support temporarily the overload which may result due to the loss of shear capacity to the structure. These respects being considered, this research has carried out with the purpose of the experimental verification of the shear strengthening effect and ductility evaluation.

  • PDF

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

Relative Density and Stress-Dependent Failure Criteria of Marine Silty Sand Subjected to Cyclic Loading (반복하중을 받는 해양실트질 모래의 상대밀도에 따른 응력기반 파괴기준)

  • Ko, Min Jae;Son, Su Won;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • An experimental study has been conducted by using the Cyclic Direct Simple Shear apparatus to evaluate the influence of average and cyclic shear stresses on the undrained shear failure behavior of marine silty sand considering various relative densities. The obtained results show that despite using different relative densities, similar trends were gained in the cyclic shear deformation. Moreover, the cyclic shear deformation is affected mainly by the average and cyclic shear stresses. The number of cyclic loads for failure is significantly affected by the cyclic shear stress ratio and relative density, and is less affected by the average shear stress ratio. The proposed three-dimensional stress-dependent failure contour can be used effectively to assess the soil shear strength considering various relative densities in the design of foundation used for offshore structures.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

The Shear Resistance of Rc Deep Beam with Web Opening Repaired and Reinforced by Fiber Sheets After Shear Failure (깊이가 큰 철근콘크리트 유공보의 보수·보강 전후의 내력에 관한 연구)

  • Yang, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.149-158
    • /
    • 2004
  • In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.

Estimation of Shear Plane at Failed Landfill Using Field and Laboratory Tests (현장 및 실내실험을 이용한 매립지 전단활동면 추정에 대한 연구)

  • Choi, Hoseong;Kim, Tae-Hyung;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.315-327
    • /
    • 2019
  • Back analysis has been used to evaluate the factor of safety and circular failure plane at the landfill failure site. However, the estimated circular failure plane by back analysis is quite different from what is observed in the field. Thus, this study was conducted to estimate an actual shear failure plane inside the ground which gives a more accurate failure plane. Cone penetration test (CPT), boring test, soft X-ray image scan, density logging, and ultrasonic logging were conducted at the field and laboratory. The result of CPT showed significantly lower cone resistance, pore pressure, and undrained shear strength at a particular part. This part is a possible shear failure plane inside the ground. To validate, the soft X-ray scan images were analyzed and found the disturbed (inclined) bedding plane induced by shear activity at the estimated shear failure plane. Density and ultrasonic logging tests also found a similar result. Thus, the method in this study is possible to estimate the shear failure plane inside the ground.