Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.4.375

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength  

Shi, Yunwei (School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University)
Luo, Xianqi (School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University)
Wang, Pingfan (School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University)
Publication Information
Geomechanics and Engineering / v.31, no.4, 2022 , pp. 375-384 More about this Journal
Abstract
The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.
Keywords
3D slope stability; failure mechanism; limit analysis; spatially varying strength;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Rahardjo, H., Lim, T.T., Chang, M.F. and Fredlund, D.G. (1995), "Shear-strength characteristics of a residual soil", Can. Geotech. J., 32(1), 60-77. https://doi.org/10.1139/t95-005.   DOI
2 Rao, P.P., Wu, J., Jiang, G.Y., Shi, Y.W., Chen, Q.S. and Nimbalkar, S. (2021), "Seismic stability analysis for a two-stage slope", Geomech. Eng., 27(2), 189-196. https://doi.org/10.12989/gae.2021.27.2.189.   DOI
3 Ray, R., Deb, K. and Shaw, A. (2019), "Pseudo-Spring smoothed particle hydrodynamics (SPH) based computational model for slope failure", Eng. Anal. Bound. Elem., 101, 139-148. https://doi.org/10.1016/j.enganabound.2019.01.005.   DOI
4 Satyanaga, A., Moon, S.W. and Kim, J.R. (2022), "Stability analyses of dual porosity soil slope", Geomech. Eng., 28(1), 77-87. https://doi.org/10.12989/gae.2021.28.1.077.   DOI
5 Farshidfar, N., Keshavarz, A. and Mirhosseini, S.M. (2021), "Seismic stability of reinforced soil slopes using the modified pseudo-dynamic method", Earthq. Struct., 20(5), 473-486. https://doi.org/10.12989/eas.2021.20.5.473.   DOI
6 Feng, Z.K. and Xu, W.J. (2021), "GPU material point method (MPM) and its application on slope stability analysis", Bull. Eng. Geol. Environ., 80(7), 5437-5449. https://doi.org/10.1007/s10064-021-02265-8.   DOI
7 Gao, G., Meguid, M.A., Chouinard, L.E. and Xu, C. (2020), "Insights into the transport and fragmentation characteristics of earthquake-induced rock avalanche: Numerical study", Int. J. Geomech., 20(9), 04020157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001800.   DOI
8 Gao, G., Meguid, M.A., Chouinard, L.E. and Zhan, W.W. (2021), "Dynamic disintegration processes accompanying transport of an earthquake-induced landslide", Landslides., 18(3), 909-933. https://doi.org/10.1007/s10346-020-01508-1.   DOI
9 Gibson, R.E. and Morgenstern, N. (1962), "A note on the stability of cuttings in normally consolidated clays", Geotechnique, 12(3), 212-216. https://doi.org/10.1680/geot.1962.12.3.212.   DOI
10 Gao, Y.F., Wu, D., Zhang, F., Lei, G.H., Qin, H.Y. and Qiu, Y. (2016), "Limit analysis of 3D rock slope stability with non-linear failure criterion", Geomech. Eng., 10(1), 59-76. https://doi.org/10.12989/gae.2016.10.1.059.   DOI
11 Griffiths, D.V. and Yu, X. (2015), "Another look at the stability of slopes with linearly increasing undrained strength", Geotechnique, 65(10), 824-830. https://doi.org/10.1680/jgeot.14.T.030.   DOI
12 Ke, L.J., Gao, Y.F., Zhao, Z.H., Zhou, Y.D. and Ji, J. (2021), "Undrained bearing capacity of strip footing near slopes considering the orientation of strength increase", Int. J. Geomech., 21(7), 06021016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002088.   DOI
13 Hassanikhah, A. and Drumm, E.C. (2020), "Stability and evolution of planar and concave slopes under unsaturated and rainfall conditions", Int. J. Geomech., 20(7), 04020099. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001662.   DOI
14 He, Y., Hazarika, H., Yasufuku, N., Han, Z. and Li, Y.G. (2015), "Three-dimensional limit analysis of seismic displacement of slope reinforced with piles", Soil Dyn. Earthq. Eng., 77, 446-452. http://dx.doi.org/10.1016/j.soildyn.2015.06.015.   DOI
15 Hossley, A. and Lenshchinsky, B. (2019), "Stability and failure geometry of slopes with spatially varying undrained shear strength", J. Geotech. Geoenviron. Eng., 145(5), 06019002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002046.   DOI
16 Wang, L., Sun, D.A. and Li, L. (2019), "3D stability of partially saturated soil slopes after rapid drawdown by a new layer-wise summation method", Landslides., 16(2), 295-313. https://doi.org/10.1007/s10346-018-1081-2.   DOI
17 Skempton, A.W., Schuster, R.L. and Petley, D.J. (1969), "Joints and fissures in the London Clay at Wraysbury and Edgware", Geotechnique, 19(2), 205-217. https://doi.org/10.1680/geot.1969.19.2.205.   DOI
18 Tran, A.T.P., Kim, A.R. and Cho, G.C. (2019), "Numerical modeling on the stability of slope with foundation during rainfall", Geomech. Eng., 17(1), 109-118. https://doi.org/10.12989/gae.2019.17.1.109.   DOI
19 Ukritchon, B., Yoang, S. and Keawsawasvong, S. (2020), "Undrained stability of unsupported rectangular excavations in non-homogeneous clays", Comput. Geotech., 117, 103281. https://doi.org/10.1016/j.compgeo.2019.103281.   DOI
20 Weng, M.C., Lin, M.L., Lo, C.M., Li, H.H., Lin, C.H., Lu, J.H. and Tsai, S.J. (2019), "Evaluating failure mechanisms of dip slope using a multiscale investigation and discrete element modelling", Eng. Geol., 263, 105303. https://doi.org/10.1016/j.enggeo.2019.105303.   DOI
21 Yang, X.L. and Li, Z.W. (2018), "Comparison of factors of safety using a 3D failure mechanism with kinematic approach", Int. J. Geomech., 18(9), 04018107. https://doi.org/ 10.1061/(ASCE)GM.1943-5622.0001235.   DOI
22 Yang, X.L. and Xu, J.S. (2017), "Three-dimensional stability of two-stage slope in inhomogeneous soils", Int. J. Geomech., 17(7), 06016045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000867.   DOI
23 Zhang, F., Leshchinsky, D., Baker, R., Gao, Y.F. and Leshchinsky, B. (2016), "Implications of variationally derived 3D failure mechanism", Int. J. Numer. Anal. Methods Geomech., 40(18), 2514-2531. https://doi.org/ 10.1002/nag.2543.   DOI
24 Bi, J.F., Luo, X.Q., Zhang, H.T. and Shen, H. (2019), "Stability analysis of complex rock slopes reinforced with prestressed anchor cables and anti-shear cavities", Bull. Eng. Geol. Environ., 78(2), 2027-2039. https://doi.org/10.1007/s10064-017-1171-8.   DOI
25 Hunter, J.H. and Schuster, R.L. (1968), "Stability of simple cuttings in normally consolidated clays", Geotechnique, 18(3), 372-378. https://doi.org/10.1680/geot.1968.18.3.372.   DOI
26 Bui, H.H., Fukagawa, R., Sako, K. and Wells, J.C. (2011), "Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH)", Geotechnique, 61(7), 565-574. https://doi.org/10.1680/geot.9.P.046.   DOI
27 Chehade, H.A., Dias, D., Sadek, M., Jenck, O. and Chehade, F.H. (2022), "Seismic internal stability of saturated reinforced soil retaining walls using the upper bound theorem of limit analysis", Soil Dyn. Earthq. Eng., 155, 107180. https://doi.org/10.1016/j.soildyn.2022.107180.   DOI
28 Azarafza, M., Bonab, M.H. and Akgun, H. (2021), "Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone", Geomech. Eng., 27(5), 481-495. https://doi.org/10.12989/gae.2021.27.5.481.   DOI
29 Azhari, A. and Ozbay, U. (2018), "Role of geometry and stiffness contrast on stability of open pit mines struck by earthquakes", Geotech. Geol. Eng., 36(2), 1249-1266. https://doi.org/10.1007/s10706-017-0390-x.   DOI
30 Bhandari, T., Hamad, F., Moormann, C., Sharmai, K.G. and Westrich, B. (2016), "Numerical modelling of seismic slope failure using MPM", Comput. Geotech., 75, 126-134. https://doi.org/10.1016/j.compgeo.2016.01.017.   DOI
31 Bjerrum, L. (1967), "Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings", Geotechnique, 17(2), 83-118. https://doi.org/10.1680/geot.1967.17.2.83.   DOI
32 Bonilla-Sierra, V., Scholtes, L., Donze, F.V. and Elmouttie, M.K. (2015), "Rock slope stability analysis using photogrammetric data and DFN-DEM modelling", Acta Geotech., 10(4), 497-511. https://doi.org/10.1007/s11440-015-0374-z.   DOI
33 Li, W., Li, J.B., Tang, G.P., Chen, J.Y. and Dai, C.L. (2021), "Upper-bound limit analysis for slope stability based on modified Mohr-Coulomb failure criterion with tensile cutoff", Int. J. Geomech., 21(10), 04021184. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002154.   DOI
34 Koppula, S.D. (1984), "On stability of slopes in clays with linearly increasing strength", Can. Geotech. J., 21(3), 577-581. https://doi.org/10.1139/t84-059.   DOI
35 Kumar, J., Chakraborty, M. and Sahoo, J.P. (2014), "Stability of unsupported vertical circular excavations", J. Geotech. Geoenviron. Eng., 140(7), 04014028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001118.   DOI
36 Li, A.J., Merifield, R.S. and Lyamin, A.V. (2009), "Limit analysis solutions for three dimensional undrained slopes", Comput. Geotech., 36(8), 1330-1351. https://doi.org/10.1016/j.compgeo.2009.06.002.   DOI
37 Li, A.J., Merifield, R.S. and Lyamin, A.V. (2010), "Three-dimensional stability charts for slopes based on limit analysis methods", Can. Geotech. J., 47(12), 1316-1334. https://doi.org/10.1139/T10-030.   DOI
38 Li, B., Zhang, F. and Wang, D. (2018), "Impact of crack on stability of slope with linearly increasing undrained strength", Math. Probl. Eng., 2018, 1096513. https://doi.org/10.1155/2018/1096513.   DOI
39 Zhang, H.T., Luo, X.Q., Bi, J.F., He, G.F. and Guo, Z.J. (2019), "Submarine slope stability analysis during natural gas hydrate dissociation", Mar. Geores. Geotechnol., 37(4), 467-476. https://doi.org/10.1080/1064119X.2018.1452997.   DOI
40 Zhang, Y.B., Chen, G.Q., Zheng, L., Li, Y.G. and Zhuang, X.Y. (2013), "Effects of geometries on three-dimensional slope stability", Can. Geotech. J., 50(3), 233-249. https://doi.org/10.1139/cgj-2012-0279.   DOI
41 Zhou, J.F and Qin, C.B. (2020), "A novel procedure for 3D slope stability analysis: lower bound limit analysis coupled with block element method", Bull. Eng. Geol. Environ, 79(4), 1815-1829. https://doi.org/10.1007/s10064-019-01657-1.   DOI
42 Zhou, Y., Zhang, F., and Li, B. (2019), "Static and seismic stability charts for three-dimensional cut slopes and natural slopes under short-term undrained conditions", Adv. Civ. Eng., 2019, 191467. https://doi.org/10.1155/2019/1914674.   DOI
43 Park, D. and Michalowski, R.L. (2018), "Intricacies in three-dimensional limit analysis of earth slopes", Int. J. Numer. Anal. Methods Geomech., 42(17), 2109-2129. https://doi.org/10.1002/nag.2846.   DOI
44 Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier Scientific Publishing Company, New York, NY, USA.
45 Mesri, G. and Shahien, M. (2003), "Residual shear strength mobilized in first-time slope failures", J. Geotech. Geoenviron. Eng., 129(1), 12-31. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(12).   DOI
46 Michalowski, R.L. and Drescher, A. (2009), "Three-dimensional stability of slopes and excavations", Geotechnique, 59(10), 839-850. https://doi.org/10.1680/geot.8.P.136.   DOI
47 Naeij, M., Ghasemi, H., Ghafarian, D. and Javanmardi, Y. (2021), "Explicit finite element analysis of slope stability by strength reduction", Geomech. Eng., 26(2), 133-146. https://doi.org/10.12989/gae.2021.26.2.133.   DOI
48 Nian, T.K., Jiang, J.C., Wang, F.W., Yang, Q. and Luan, M.T. (2016), "Seismic stability analysis of slope reinforced with a row of piles", Soil Dyn. Earthq. Eng., 84, 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023.   DOI
49 Deng, D.P., Lu, K. and Li, L. (2019), "LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength", Geomech. Eng., 19(2), 179-191. https://doi.org/10.12989/gae.2019.19.2.179.   DOI
50 Chen, Z.Y. (1992), "Random trials used in determining global minimum factors of safety of slopes", Can. Geotech. J., 29(2), 225-233. https://doi. org/ 10. 1139/ t92- 026.   DOI