• 제목/요약/키워드: Shear Bands

검색결과 74건 처리시간 0.026초

Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate

  • Moon, Wonjoo;Seo, Songwon;Lim, Jaeyoung;Min, Oakkey
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1412-1419
    • /
    • 2002
  • Dynamic shear tests for the tough-pitch copper at high strain and high strain rate was performed. The Split Hopkinson Pressure Bar (SHPB) compression test system was modified to yield a shear deformation in the specimen. Hat-shaped specimens for the tough-pitch copper were adopted to generate high strain of γ=3~4 and high strain-rate of γ= 10$^4$/s. The dynamic analysis by ABAQUS 5.5/EXPLICIT code verified that shear zone can be localized in hat-shaped specimens. A proper impact velocity and the axial length of the shear localization region wert determined through the elastic wave analysis. The displacement in a hat-shaped specimen is limited by a spacer ring which was installed between the specimen and the incident bar. The shear bands were obtained by measuring the direction of shear deformation and the width of deformed grain in the shear zone. The decrease of specimen length has been measured on the optical displacement transducer. Dynamic shear stress-strain relations in the tough-pitch copper were obtained at two strain-rates.

Dynamic strain aging 에 의한 국소변형의 perturbation analysis (Perturbation analysis of localized deformation by dynamic strain aging)

  • 양승용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

고Mn강의 소성에 따른 미세조직및 Texture 변화에 관한연구 (The development of deformation microstructures and textures in high Mn steels)

  • 김택남;김종옥
    • 자연과학논문집
    • /
    • 제7권
    • /
    • pp.83-90
    • /
    • 1995
  • 탄소함량이 다른 두 Hadfield's강의 (고Mn강) 소성에 관한 연구를, 냉간압연시 나타나는 금속미세조직, texture등으로 조사하였다. Low carbon Hadfield's steel (LCHS, 0.65 wt. % C)에서는 적층결함, 쌍정및 brass type shear bands가 냉간압연시 나타나고, 이때 쌍정은 Intrinsic적층결함이 차곡차곡 쌓여서 나타나는것으로 생각된다. Texture 는 70-30 황동과 초기에는 비슷하나, 40% 이상의 변형에서는 마르텐사이트 상변화에 의해서 이상 texture가 나타난다. 한편 high carbon Hadfield's steel (HCHS, 1.35 wt. % C)에서는 전위엉킴, 쌍정및 copper and brass type shear bands가 소성 변형시 나타난다. Texture 는 70-30 황동과 비슷하고 이상 texture는 나타나지않고있다. 이러한 사실은 HCHS에서 마르텐사이트 상변화가 나타나지 않는것과 또 탄소원자가 편석되지 않는것과 잘일치하고 있다. LCHS와 HCHS사이의 미세조직과 texture의 변화에 많은 차이점을 보일지라도, 적층결함에너지의 차이는 매우작고 약 ($2 mJm^-2$), 탄소편석이 오직 LCHS에서만 일어나고 있다. 따라서 탄소와 같은 작은 원자의 편석이 미세조직 뿐만아니라, texture에 영향을 미치는 것을 생각 할 수 있다. 이러한 탄소의 편석은 LCHS에서 마르텐사이트 상변화와도 관계가 깊다.

  • PDF

벌크 비정질 합금의 초저온 소성 (Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature)

  • 윤규상;이미림;이재철
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.699-704
    • /
    • 2010
  • We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.

Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동 (Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals)

  • 고동균;정영진;신형섭;오상엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성확
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • 제3권3호
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.