Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.08.699

Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature  

Yoon, Kyeu-Sang (Department of Materials Science and Engineering, Korea University)
Lee, Mirim (Department of Materials Science and Engineering, Korea University)
Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.8, 2010 , pp. 699-704 More about this Journal
Abstract
We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.
Keywords
amorphous alloy; cryogenic temperature plasticity; viscosity; shear band velocity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. Inoue, Acta Mater. 48, 279 (2000).   DOI   ScienceOn
2 Y. Yokoyama, K. Fukaura, and A. Inoue, Intermetallics 10, 1113 (2002).   DOI   ScienceOn
3 C. J. Gilbert, V. Schroeder, and R. O. Ritchie, Metall. Mater. Trans. A 30A, 1739 (1999).
4 H. Li, C. Fan, K. Tao, H. Choo, and P. K. Liaw, Adv. Mater. 18, 752 (2006).   DOI   ScienceOn
5 Y. Huang, J. Shen, J. Sun, and Z. Zhang, Mater. Sci. Eng. A 498, 203 (2008).   DOI   ScienceOn
6 A. Kwashima, Y. Zeng, M. Fukuhara, H. Kurishita, N. Nishiyama, H. Miki, and A. Inoue, Mater. Sci. Eng. A 498, 475 (2008).   DOI   ScienceOn
7 A. Kwashima, T. Okuno, H. Kurishita, W. Zhang, H. Kimura, and A. Inoue, Mater. Trans. 48, 2787 (2007).   DOI   ScienceOn
8 T. Okuno, A. Kawashima, H. Kurishita, W. Zhang, H. Kimura, and A. Inoue, Mater. Trans. 49, 513 (2008).   DOI   ScienceOn
9 K. W. Park, C. M. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 773 (2009).
10 M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).   DOI   ScienceOn
11 M. L. Falk, Phys. Rev. B 60, 7062 (1999).   DOI
12 C. A. Schuh, Ac. C. Lund, and T. G. Nieh, Acta Mater. 52, 5879 (2004).   DOI   ScienceOn
13 K. W. Park, J. Jang, M. Wakeda, Y. Shibutani, and J. C. Lee, Scripta. Mater. 57, 805 (2007).   DOI   ScienceOn
14 M. Wakeda, Y. Shibutani, S. Ogata, and J. Park, Intermetallics 15, 139 (2007).   DOI   ScienceOn
15 M. R. Lee, K. W. Park, H. J. Sa, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 687 (2009).
16 F. spaepen, Acta. Mater. 25, 407 (1977).   DOI   ScienceOn
17 K. W. Park, , M. Wakeda, Y. Shibutani, E. fluery, and J. C. Lee, Met. Mater. Int. 14, 159 (2008).   DOI   ScienceOn
18 S. J. Lee, B. G. Yoo, J. I. Jang, and J. C. Lee, Met. Mat. Int. 14, 9 (2008).   DOI   ScienceOn
19 C. M. Lee, K. W. Park, B. J. Lee, J. H. Shim, J. H. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 46, 701 (2008).
20 W. J. Wright, M. W. Samale, T. C. Hufnagel, M. M. LeBlanc, and J. N. Florando, Acta Mater. 57, 4639 (2009).   DOI   ScienceOn
21 D. R. Gaskell, An introduction to transport phenomena in materials engineering, p.35-36, Macmillan Publishing Company, New York (1992).
22 Y. Shibutani, M. B. Katz, H. Li, and M. L. Falk, Phys. Rev. Lett. 98, 185585 (2007).
23 K. W. Park, C. M. Lee, E. Fleury, and J. C. Lee, Scripta. Mater. 61, 363 (2009).   DOI   ScienceOn
24 K. W. Park, C. M. Lee, H. G. Lee, J. H. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 46, 572 (2008).