Browse > Article
http://dx.doi.org/10.12989/cac.2018.21.2.189

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks  

Shemirani, Alireza Bagher (Department of Civil Engineering, Sadra Institute of Higher Education)
Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University)
Marji, Mohammad Fatehi (Head of Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University)
Hosseini, Seyed shahin (Department of Civil Engineering, Aria University of Sciences and Sustainability)
Publication Information
Computers and Concrete / v.21, no.2, 2018 , pp. 189-197 More about this Journal
Abstract
A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.
Keywords
punch-through shear test; confining pressure; shear and tensile cracks; discrete element method;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737   DOI
2 Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214.   DOI
3 Haeri, H., Khaloo, A. and Fatehi Marji, M. (2015), "Fracture analyses of different preholed concrete specimens under compression", Acta Mech Sin, 31(6), 855-870.   DOI
4 Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653.   DOI
5 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock Samples under uniform tensile loading", 13th International Conference on Fracture, Beijing, China.
6 Kulatilake, P.H.S.W., Malama, B. and Wang, J. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci., 38(5), 641-657.   DOI
7 Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fract., 10(4), 525-536.   DOI
8 Li, J. Y., Zhou, H., Zhu, W. and Li, S. (2016), "Experimental and numerical investigations on the shear behavior of a jointed rock mass", Geosci. J., 20, 371-379.   DOI
9 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new minigrating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431.
10 Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376.   DOI
11 Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77.   DOI
12 Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geolog. Eng., 24(4), 985-999.   DOI
13 Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398.   DOI
14 Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26, 525-534.
15 Sarfarazi, V. and Haeri, H., (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257.   DOI
16 Prudencio, M. (2009), "Study of the strength and failure mode of rock mass with non-persistent joints", Ph.D. Thesis, Catholic University of Chile, Santiago, Chile.
17 Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902   DOI
18 Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241   DOI
19 Sahouryeh, E., Dyskin, A.V. and Germanovich, L.N. (2002), "Crack growth under biaxial compression", Eng. Fract. Mech., 69(18), 2187-2198,   DOI
20 Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498.   DOI
21 Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284   DOI
22 Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371.   DOI
23 Sarfarazi, V., Haeri, H. and Khaloo, A. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737.   DOI
24 Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118.   DOI
25 Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156.   DOI
26 Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939.   DOI
27 Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000a), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-art I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569.   DOI
28 Tang, C.A., Tham, L.G., Lee, P.K.K., Tsui, Y. and Liu, H. (2000b), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness and size effect", Int. J. Rock Mech. Min. Sci., 37(4), 571-583.   DOI
29 Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propa-gation and coalescence in uniaxial compression", Rock Mech. Rock. Eng., 33(2), 119-139   DOI
30 Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia-Soc. Behav. Sci., 198, 2280-2289.
31 Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64.   DOI
32 Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324.   DOI
33 Wong, R.H.C. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: Part I. macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511.   DOI
34 Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511   DOI
35 Wong, L.N.Y. and Einstein, H.H. (2009b), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249   DOI
36 Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164.   DOI
37 Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part I: experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924   DOI
38 Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8, 541-557   DOI
39 Yang, S.T., Hu, X.Z. and Wu, Z.M. (2011), "Influence of local fracture energy distribution on maximum fracture load of threepoint-bending notched concrete beams", Eng. Fract. Mech., 78, 3289-99.   DOI
40 Yang, Y.F., Tang, C.A. and Xia, K.W. (2012), "Study on crack curving and branching mechanism in quasibrittle materials under dynamic biaxial loading", Int. J. Fract., 177(1), 53-72.   DOI
41 Yin, P., Wong, R.H.C. and Chau, K.T. (2014), "Coalescence of two parallel preexisting surface cracks in granite", Int. J. Rock Mech. Min. Sci., 68, 66-84
42 Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888.   DOI
43 Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225.   DOI
44 Baud, P., Reuschle, T. and Charlez, P, (1996), "An improved wing crack model for the deformation and failure of rock in compression", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 33(5), 539-542.   DOI
45 Bobet, A. (2001), "A hybridized displacement discontinuity method for mixed mode I-II-III loading", Int. J. Rock Mech. Min. Sci., 38(8), 1121-1134.   DOI
46 Bobet, A. and Einstein, H.H. (1998), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fract., 92(3), 221- 252.   DOI
47 Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65.   DOI
48 Brown, E.T. (1970), "Strength of models of rock with intermittent joints", J. Soil Mech. Found. Div., ASCE, 96, 1935-1949.
49 Chan, H.C.M., Li, V. and Einstein, H.H. (1990), "A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation", Int. J. Fract., 45(4), 263-282.   DOI
50 Chen, X., Liao, Z.H. and Peng, X. (2013), "Cracking process of rock mass models under uniaxial compression", J. Central South Univ., 20(6), 1661-1678.   DOI
51 Zhou, X.P., Cheng, H. and Feng, Y.F. (2013), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47-6, 1961-1986.   DOI
52 Zhang, H., He, Y., Han, L, Jiang, B., Liang, Z. and Zhong, S. (2009), "Microfracturing characteristics in brittle material containing structural defects under biaxial loading", Comput. Mater. Sci., 46(3), 682-686.   DOI
53 Zhang, X.P. and Wong, L.N.Y. (2011), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737.   DOI
54 Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021.   DOI
55 Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 6(5), 647-655.
56 Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693.   DOI
57 De Bremaecker, J.C. and Ferris, M.C. (2004), "Numerical models of shear fracture propagation", Eng. Fract. Mech., 71(15), 2161-2178.   DOI
58 Einstein, H.H., Veneziano, D., Baecher, G.B. and O'Reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 20(5), 227-36.   DOI
59 Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91.   DOI
60 Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623,   DOI
61 Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12.   DOI