Browse > Article

Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process  

Lee, Kyuhong (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
Lee, Sang-Bok (Composite Materials Laboratory Korea Institute of Materials Science)
Lee, Sang-Kwan (Composite Materials Laboratory Korea Institute of Materials Science)
Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
Publication Information
Korean Journal of Metals and Materials / v.46, no.7, 2008 , pp. 403-411 More about this Journal
Abstract
Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.
Keywords
composite; amorphous alloy; liquid pressing process; multiple shear bands;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM 36, 391 (1995)   DOI
2 S. B. Lee, K. Lee, S. K. Lee, S. Lee, J. Kor. Inst. Met. & Mater. 45, 435 (2007)
3 C. Fan, C. Li, A. Inoue and V. Haas, Phys. Rev. B 61, R3761 (2000)   DOI   ScienceOn
4 H. Choi-Yim and W.L Johnson, Appl. Phys. Lett. 17, 3808, (1997)
5 R. B. Dandliker, R. D. Conner and W. L. Johnson, J. Mater. Res. 13, 2896 (1998)   DOI   ScienceOn
6 A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993)   DOI   ScienceOn
7 K Lee, K Euh, D. H. Nam, S. Lee and N. J. Kim, Mater. Sci. Eng A A449-451 937 (2007)
8 S. G. Warrier, P. Rangaswamy, M. A. M Bourke, S. Krishnamurthy, Mater. Sci. Eng. A, 259, 220 (1999)   DOI   ScienceOn
9 Y. H. Jang, S. S. Kim, Y. C. Jung and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004)
10 J. L. Murry, Phase Diagram of Binary Titanium Alloys, ASM international, Metal Park, OH (1987)
11 H. Choi-Yim, R. Busch, U. Koster and W.L. Johnson, Acta Mater. 47, 2455 (1999)   DOI   ScienceOn
12 L. Q. Xing, Y. Li, K. T. Ramesh, J. Li and T. C. Hufnagel, Phy. Rev. B 64, 180201(R) (2001)   DOI   ScienceOn
13 L. Q. Xing, C. Bertrand, J. P. Dallas and M. Cornet, Mater. Sci. Eng. A 241, 216 (1998)   DOI   ScienceOn
14 C. C. Hays, C. P. Kim and W.L. Johnson, Phys. Rev. Lett. 84, 2901 (2000)   DOI   ScienceOn
15 J. G. Lee, S. S. Park, D-G. Lee, S. Lee and N. J. Kim, Intermetallics 12, 1125 (2004)   DOI   ScienceOn
16 J. C Lee, Y. C Kim, J. P. Ahn, H.S. Kim, Acta Mater. 53, 129 (2005)   DOI   ScienceOn
17 H. Ergun, H. Boduroglu, Mater. Sci. Eng. A 387-389, 882 (2004)   DOI   ScienceOn
18 Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Appl. Phys. Lett. 69, 1208 (1996)   DOI   ScienceOn
19 W. H. Wang, C. Dong and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004)   DOI   ScienceOn