• Title/Summary/Keyword: Sharp Corner

Search Result 38, Processing Time 0.033 seconds

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동)

  • 정희영;정의영;김주우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2012
  • Aspect of filling imbalance that is originated from imbalanced share rate in runner is changed by material property, runner layout that are factors of changing viscosity and by injection pressure, injection speed, melt temperature and mold temperature that are injection conditions. In this paper, we made a study of runner system that is one of factor of filling imbalance and Sharp Conner Effect and Groove Corner Effect that are recently released. The study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Also, we suggested runner system for filling imbalance by adapting the two effects at multi cavity of unary branch type and theoretical investigated flow in the Shrap Conner runner type.

  • PDF

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.144-149
    • /
    • 2008
  • Configuration of filling imbalance which is originated from imbalanced share rate of melt on runner is changed by runner layout, runner shape, material property, injection pressure, injection speed, melt temperature and mold temperature. In this paper, we conducted a study of runner layout and shape that are main factors of filling imbalance. Other factors such as the sharp corner effect and the groove corner effect are recently released were also considered. The results of study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Especially, this study suggests a new runner system for filling balance by adapting the two effects of unary branch type runner at multi cavity mold and theoretical investigated flow in the sharp corner type runner.

A study on the corner compensation in anisotropic TMAH etching for pendulum structure (펜듈럼 구조체 제작을 위한 TMAH 습식 식각 시 모서리 보상에 관한 연구)

  • Han, Kyu-Sung;Lee, Ki-Jung;Park, Sin-Wook;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2241-2242
    • /
    • 2008
  • Anisotropic TMAH etching is key processing step for the fabrication of pendulum structure. During the etching, convex corners are attacked, and a proper compensating structure design is required when fabricating pendulum structures with sharp convex corner. In this paper, we present four compensation structures for convex corner compensation with 30% wt TMAH-water solution at $89\pm1^{\circ}C$ temperature, and observe the etched convex corner by optical microscope. we compare the result of calculations and experiments about four convex corner compensation patterns.

  • PDF

Study on aerodynamic shape optimization of tall buildings using architectural modifications in order to reduce wake region

  • Daemei, Abdollah Baghaei;Eghbali, Seyed Rahman
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • One of the most important factors in tall buildings design in urban spaces is wind. The present study aims to investigate the aerodynamic behavior in the square and triangular footprint forms through aerodynamic modifications including rounded corners, chamfered corners and recessed corners in order to reduce the length of tall buildings wake region. The method used was similar to wind tunnel numerical simulation conducted on 16 building models through Autodesk Flow Design 2014 software. The findings revealed that in order to design tall 50 story buildings with a height of about 150 meters, the model in triangular footprint with aerodynamic modification of chamfered corner facing wind direction came out to have the best aerodynamic behavior comparing the other models. In comparison to the related reference model (i.e., the triangular footprint with sharp corners and no aerodynamic modification), it could reduce the length of the wake region about 50% in general. Also, the model with square footprint and aerodynamic modification of chamfered corner with the corner facing the wind could present favorable aerodynamic behavior comparing the other models of the same cluster. In comparison to the related reference model (i.e., the square footprint with sharp corners and no aerodynamic modification), it could decrease the wake region up to 30% lengthwise.

Geometric Optimization Involving Contact Stress Singularities (특이 접촉응력 문제의 형상 최적화)

  • Park, Jung-sun;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.180-188
    • /
    • 1996
  • The stress singularity of a sharp wedge contacting a half plane can be avoided by changing the wedge shape. Shape optimization is accomplished with the geometric strain method (GSM), an optimality criterion method. Several numerical examples are provided for different materials in the wedge and half plane to avoid stress singularity neal the sharp corner of the wedge. Optimum wedge shapes are obtained and critical corner angles are compared with the angles from analytical contact mechanics. Numerical results are well matched to analytical and experimental results. It is shown that shape optimization by the geometric strain method is a useful tool to reshape the wedge and to avoid a stress singulatiry. The method applies to more general geometries where the singular behavior would be difficult to avoid by classical means.

A Study on the Cold Forging Design System Using Neural Networks (신경망을 이용한 냉간 단조품 설계 지원 시스템에 관한 연구)

  • Kim, Young-Ho;Bae, Won-Byong;Suh, Yun-Soo;Park, Jong-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.91-97
    • /
    • 1996
  • This paper deals with a cold forging design system by which designers can determine desirable plans of cold forging design even if they have little experience. In this system, neural networks are used to transform qualitative knowledges to quantitative knowledges. The neural network is learned with three parts which are most important in cold forging design - undercut, narrow hole, sharp corner. The capabilities of the system are illustrated through an example of forging design.

  • PDF

A Study on the Overlap of Grid Lines around a Sharp Convex Corner with the Elliptic Grid Generation Schemes (날카로운 볼록 코너 주위의 타원형 격자 생성 기법에 의한 격자선의 겹침에 대한 고찰)

  • Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.55-60
    • /
    • 1998
  • An elliptic grid generation scheme using Laplace's equations guarantees the resulting grids to be crossing-free as a result of maximum principle in its analytic form. Numerical results, however, often show the grid lines overlapping each other or crossing the boundaries, especially for very sharp convex corners. The cause of this problem is investigated, and it is found that this problem can be handled by properly modifying the coefficients of transformed Laplace's equations in the computational domain.

  • PDF

Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing (액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템)

  • Kim, J.S.;Kim, K.S.;Shim, S.H.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.