• Title/Summary/Keyword: Shape optimal design

Search Result 1,109, Processing Time 0.025 seconds

Topology Optimal Design for Lightweight Shape of the Vehicle Mechanical Component (수송기계부품의 경량화 형상을 위한 위상최적설계)

  • 황영진;강신권;김종범;이석순;최창곤;손재홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.177-184
    • /
    • 2003
  • In this study we performed optimal design for the vehicle mechanical component which satisfies both a sufficient stiffness and a lightweight using topology optimization technique. The FEA for the initial model before optimal design is performed by ABAQUS/Standard. And, we suggest optimization model using the topology optimal design program Altair Optisturuct 3.6. The FEA of optimal design is performed under the same condition as the initial model. We performed the FEA fur the topology optimal design model and verified the validity of the present method.

Optimal Design for Cushioning Package of a Heavy Electronic Product using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.677-683
    • /
    • 2003
  • Generally, heavy electronic products undergo many different types of shocks in transporting from a manufacturer to customers. Cushioning package materials are used to protect electronic products from severe shock environments. Since the mass distributions of heavy electronic products are usually unbalanced and complex, it is very difficult to design a cushioning package with haying high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning material for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning material for a large-sized refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study, the optimal shape of cushioning material, which has high cushioning performance and minimized volume, was obtained from the drop analysis and a optimization process. From free drop tests of a refrigerator, it was identified that the cushioning performance of the optimal package were improved up to 16 % and the volume of it was reduced in a range of 22 %.

  • PDF

Optimal Positioning of Heating Lines in a Compression Molding Die Using the Boundary Element Method (경계요소법을 이용한 압축성형다이 가열선의 최적위치 설계)

  • 이부윤;조종래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1478-1485
    • /
    • 1993
  • A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.

Optimal design of shape of a working in cracked rock mass

  • Mirsalimov, Vagif M.
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • A criterion and a method for solving a problem on the prevention of mine working fracture under the action of tectonic and gravitational forces are offered. Based on minimal criterion, theoretical analysis of the definition of the optimal shape of working in the rock mass weakened by arbitrarily located rectilinear cracks was carried out. A closed system of algebraic equations allowing to minimize the stress state and stress intensity factors depending on mechanical and geometrical characteristics of the rock, is constructed. The relation between the shape of the working and the stress intensity factors and also location and sizes of the cracks is obtained. The found optimal shape of working increases load-bearing capacity of the rock.

The Changes of Shinkansen Vehicles' Nose Shape (신간선 전두부 디자인의 형상 변천)

  • Kim, Kwang-Myung;Han, Suk-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.124-130
    • /
    • 2007
  • The emphasis of this paper is to find out the changes in length of nose in line with speed improvement and changes of the tendency in the shape of the nose in line with time series based on the Shinkansen vehicle. The length of the nose on the lines of high speed tends to get longer, however there is no proportion between the speed and the nose according to optimal design that was designed to reduce micro-pressure wave and air resistance. The Shinkansen vehicles, according to the shape, can be classified in to an Advanced Paraboloid shape, a Sharp-nosed shape, a Flat-nosed shape and an Organic Double-edged shape and is gradually changing in the trend of diversity and distinction. Hereafter, the design of the nose will be developed better into the design that will comprehend identity of manufacturer, region and culture on the basis of optimized aerodynamic shape.

A study on the topology optimization of structures (구조물의 토폴로지 최적화에 관한 연구)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1241-1249
    • /
    • 1997
  • The problem of structural topology optimization can be relaxed and converted into the optimal density distribution problem. The optimal density distribution must be post-processed to get the real shape of the structure. The extracted shape can then be used for the next process, which is usually shape optmization based on the boundary movement method. In the practical point of view, it is very important to get the optimal density distribution from which the corresponding shape can easily be extracted. Among many other factors, the presence of checker-board patterns is a powerful barrier for the shape extraction job. The nature of checker-board patterns seems to be a numerical locking. In this paper, an efficient algorithm is presented to suppress the checker-board patterns. At each iteration, density is re-distributed after it is updated according to the optimization rule. The algorithm also results in the optimal density distribution whose corresponding shape has smooth boundary. Some examples are presented to show the performance of the density re-distribution algorithm. Checker-board patterns are successfully suppressed and the resulting shapes are considered very satisfactory.

A STUDY ON THE AERODYNAMIC SHAPE DESIGN WITH THE PARSEC FUNCTION (PARSEC 함수를 이용한 헤어포일의 공력 형상 설계 연구)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk;Ahn, Joong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.88-91
    • /
    • 2007
  • In the shape design optimization of an airfoil, the shape function has been used to find the optimal airfoil shape for given conditions. The parameters determining the airfoil shape are used in the shape design optimization as design variables. However, they usually don't have physical meaning. The PARSEC (Parametric Shapes) function is a recently proposed shape function and its parameters have the physical meaning. In this study the usefulness of the PARSEC is tested for the RAE2822 airfoil in the transonic flow region to reduce the shock strength and the result is compared with Hicks-Henne function. The optimized airfoils reduce the shock strength and they show similar result.

  • PDF

The Effect of Plunger Tip Shape on the Formability in Semi-Solid Die Casting Process (반용융 다이캐스팅 공정에 있어서 플런저 팁의 형상이 성형성에 미치는 영향)

  • 서판기;손영익;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.312-322
    • /
    • 2002
  • In this study, an innovative semi-solid die casting technology to replace heavier cast iron compressor parts with lightweight aluminum castings was proposed, and the application possibility for home-appliance component was investigated. The most important factors regarding the semi-solid die casting process are the reheating process of the raw materials to the semi-solid state, specifications of the forming machine, the optimal injection conditions and die design. Materials used in this study were A3S7 and hSn alloys fabricated by the electromagnetic stirring process. The optimal injection conditions for semi-solid die casting process were Presented with the reheating conditions of the semi-solid materials. To investigate the effect of plunger tip shape on the formability and mechanical properties in semi-solid die casting process for complicated shape part, two kinds of plunger tip shape with long and short plunger tip taper are proposed.

Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices (상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

Verification of Sensitivity Method for the Design of Optimal Blanks of General Shaped Parts (일반적인 형상의 스탬핑의 최적블랭크 설계를 통한 민감도법의 검증)

  • 손기찬;심현보;황현태
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The sensitivity method has been utilized to find initial blank shapes which transform into desired shapes after forming. From the information of die shapes, target shape and material properties, the corresponding initial blank which gives final shape after deformation has been found. Drawings of a trapezoidal cup, a cross-shaped cup and an oil pan have been chosen as the examples. At every case the optimal blank shape has been obtained only a few times of modification without any predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are recognized between simulation and experiment at every cases Through the investigation, the sensitivity method is found to be effective in obtaining optimal blank shapes in drawing of complex shapes.

  • PDF