• 제목/요약/키워드: Shape of the Drilled hole

검색결과 12건 처리시간 0.033초

PCB드릴링용 공기베어링 스핀들의 런아웃(RunOut)에 따른 가공 홀의 형상변화 (Drilled Hole Variation of Air Bearing Spindle for PCB according to RUNOUT)

  • 배명일;김상진;김형철;김기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1555-1558
    • /
    • 2005
  • In this study, we measured cylindricity and Runout of the air bearing spindle, and tested PCB(printed circuit boards) drilling with 0.4mm micro drill at 90,000rpm and 110,000rpm in order to obtain drilling hole error. Results are as follows; The air bearing spindle's Runout was not so high within $10\mu{m}$ from 20,000rpm to 80,000rpm but it grew after 80,000rpm. Drilling hole size error was 9% at 80,000rpm and 12% at 110,000rpm because of spindle's Run out. Drilled hole shape falsified more 110,000rpm than 90,000rpm.

  • PDF

Drill가공시 Drill과 가공구명내벽과의 마찰이 절삭저항성분에 미치는 영향 (A Study on the Effect of the Components of Cutting Resistance upon Friction between Drill and Inside Wall of Drilled Hole in Drilling)

  • 구연욱
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.28-40
    • /
    • 1985
  • In this study, to check up on the effect of the components of cutting resistance upon friction between drill and inside wall of hole in drilling, the experiment was performed with individual specimen of carbon steel, cast iron, aluminium alloy under various cutting conditions: depth of hole, cutting speed, feed rate, shape and material of specimen. On the basis of the experimental results, the following conclusions are drawn; 1. The components of cutting resis- tance were increased in proportion to the increase of depth of hole owing to frictional resistance of drill margin and chip-jamming. 2. As feed rates increase, torque and thrust were increased. When comparing to the increasing rate for these components respecitively, thrust is higher tendency than torque. 3. As drill diameter increase, torque and thrust were increased. When comparing to the increasing rate for these components respectively, torque is higher tendency than thrust. 4. In the case of torque, the frictional resistance between drill margin and inside wall of drilled hole accounts for about 20 percent of carbon steel, 14 of cast iron, 10 aluminium alloy in drilling. But the effect of thrust force could be negligible. 5. Comparison between the theoretical and experimental results showed a close agreement so far as depth of hole is about three times of drill diameter. But there was a wide difference between them beyond the rane of three times, because of characteristics of the drilling process.

  • PDF

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 1

  • 이택순
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.37-42
    • /
    • 1988
  • The Hole Drilling Method(HDM) is widely used to measure residual stresses in the welded structures. The purpose of this study is to evaluate the accuracy fo measuring residual stresses when drilling the hole by Air-abrasive Jet machine(AJM). Simulated residual stresses wre introduced by applying known stresses to steel bars. These known streses were then compared with measured stresses relaxed from hole drilling. the obtained results are summarized as follows; 1) It was possible to obtain well defined holes with the nozzle designed for this study. 2) If the hole shape is not cylindrical, critical may occur. 3) In the uniaxial strain field, the measurement error of the maximum principal stress was within .+-.10 percent. The orientation angle of the maximum principal stress was within 8.deg. from the given directioin. 4) meausrements were made varying hole depths. Little or no change of stresses occurs since holse were drilled more than the depth of the 0.6 times diameter. 5) The air-abrasive jet machining for drilling holse does not cause appreciable apparent stresses which si critical to measure residual stresses.

  • PDF

디스크 브레이크 로터 마찰면 가공 형태에 따른 성능 변화 연구 (An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect)

  • 정택수;차바우;홍윤화;김청민;홍영훈;조종두
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.471-479
    • /
    • 2016
  • Cross-drilling and slotting on the frictional surface of a brake rotor are methods used for improving the performance of the brake system. These shapes have particular advantages, such as the shaving effect of a slotted shape, which maintains a clean pad-to-rotor contact surface, and the venting effect of a drilled shape, which provides passageways for the gas to escape. In order to understand the effect of the machined pattern on the brake performance aspect, an experimental method is adopted along with the dynamometer test. The cross-drilled rotor, slotted rotor, and mixed pattern rotor with cross-drilling and slotting machining are prepared and tested in terms of friction coefficient, temperature, braking torque, and noise.

부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계 (Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method)

  • 정기우;최낙선;김남경;김동훈
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

폐톱밥 혼입 RC 유공보의 구조거동에 관한 실험적 연구 (Structural Behavior of Holed RC Beam mixed with Sawdust)

  • 손기상;이재형
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.96-104
    • /
    • 2006
  • This study is to find out how the sawdust-mixed RC beam with holes acts compared to two case of normal one with sawdust without hole, without sawdust. variables are ED3H1, ED3H2, ED3H1UB, ED3H2L, ED5H1, ED5H1UB, ED5H2, ED5H2L, Normal with sawdust PLA without sawdust. All sand, aggregate, cement are in accordance with KS. mixing design is also in accordance with KS and done at D remicon company in order to decrease any error in mixing manually. ED3H1 showed 7tone of maximum load capacity having only minor tensile deformation around hole, compared to the center of the beam. ED5H2L showed almost same shape of tensile strain between hole area and center of two beam length, while having 9.5 tone load capacity, incase of two holes being in the longitudinal axis. But ED5H2 in case of two holes being in same forcing direction showed 8.4tone of load capacity while having minor tensile chape around hole and normal tensile shape in the center of beam length. Two diameter 3cm hole in longitudinal axis give more effective behavior than the other case, practically. Capacity decrease between 5cm and 3cm in eccentric position form the longitudinal axis is less than percents. There is minor capacity difference between hole diameter 3cm hole, but 13tone difference of load capacity between hole diameter 5cm.

연암부 벽면거칠기를 이용한 단위주면마찰력 특성에 관한 연구 (A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock)

  • 홍석우;황근배
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.7-13
    • /
    • 2019
  • 현장타설말뚝인 경우에 연암 소켓부의 단위주면마찰응력을 산정하는 방법 중 벽면 거칠기에 의한 산정 방법이 있다. 이 방법은 현장타설말뚝을 시공하기 위한 굴착 단계에서 거칠기 측정 장치를 굴착공에 설치하여 암반 벽면의 거칠기 양상을 측정하여 주면마찰력을 산정하는 것이다. 본 연구에서는 현장타설말뚝의 암반 소켓부 벽면의 거칠기 양상을 천공홀에서 직접 측정하였으며 그 결과를 이용하여 암반의 주면마찰력 특성을 파악하고자 한다. 그리고, 거칠기 시험 결과를 검증하기 위하여 동일 말뚝에 정재하시험 및 하중전이시험을 수행하였다.

드로우 금형의 에어 포켓 형상 및 체적예측 자동화 시스템 개발 (Development of an Automated System for Predicting Shape and Volume of Air Pocket on the Draw Die)

  • 정성윤;황세준;박원규;김철
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.72-78
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile. During the stamping process, air may be trapped between the draw die and the panel and/or between the punch and the panel. Air pocket rapidly not only increases forming load in the final stage, but also deforms the product just formed by compressive air inside the air pocket in knockout process. To prevent these problems air bent holes are drilled in the die to exhaust the trapped air but all processes associated with air bent holes are performed by empirical know-how of workers in the field due to lack of researches. Therefore this study developed an automated design system for predicting the shape and position, and volume of air pocket on the draw die by using the AutoLISP language under AutoCAD circumstance. The system is able to display the shape of air pocket occurred in the draw die and to calculate automatically its volume by strokes. So it makes a stepping stone to calculate theoretical size of an air bent hole and numbers according to it by predicting and analyzing the position and volume of air pocket. Results obtained from the system enable the designers or manufacturers of the stamping die to be more efficient in this field.

어브레시브 워터젯에 의한 Drilling의 3차원 모델링 연구 (Development of 3-D Modeling for Abrasive Waterjet Drilling Process)

  • 곽효성
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.7-14
    • /
    • 1999
  • 어브레시브 워터젯을 이용한 Drilling시 깊이에 대한 예측은 가장 중요한 변주중의 하나다. 이 논문에서는 구멍 깊이의 예측 및 구멍 형상을 연구하기 위하여 3차원 해석 모델이 제안되었다. 해석 모델은 크게 두 가지로 구성되었다. 하나는 비선형 반복 방정식에서 생성된 입자의 운동식이며, 다른 하나는 수많은 입자에 의한 충돌시 가공능력을 규정지우는 Constitutive Equation으로 구성되었다. 이 모델은 구멍 가공이 진행됨에 따라 발생하는 감쇠 효과를 고려하였다.실험적인 고찰이 해석모델의 유용성을 검증하기 위하여 이루어졌으며, 근사한 결과를 보였다.

  • PDF