• Title/Summary/Keyword: Shape of flame

Search Result 242, Processing Time 0.022 seconds

Flame Verification using Motion Orientation and Temporal Persistency

  • Hwang, Hyun-Jae;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.282-285
    • /
    • 2009
  • This paper proposes a flame verification algorithm using motion and spatial persistency. Most previous vision-based methods using color information and temporal variations of pixels produce frequent false alarms due to the use of many heuristic features. To solve these problems, we used a Bayesian Networks. In addition, since the shape of flame changes upwards irregularly due to the airflow caused by wind or burning material, we distinct real flame from moving objects by checking the motion orientation and temporal persistency of flame regions to remove the misclassification. As a result, the use of two verification steps and a Bayesian inference improved the detection performance and reduced the missing rate.

  • PDF

Morphology and Photoluminescence Characteristics of Halophosphate Phosphor Particles by Spray Pyrolysis and Flame Spray Pyrolysis

  • Sohn, Jong-Rak;Kang, Yun-Chan;Park, Hee-Dong;Yoon, Soon-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • Flame spray pyrolysis was applied to improve the photoluminescence characteristics of blue-emitting $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles with high brightness for the application to LED phosphor. $Sr_5(PO_4)_3Cl:Eu^{2+}$ prepared from conventional spray pyrolysis had poor PL intensity than that of commercial products under long-wavelength ultraviolet(UV). $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by flame spray pyrolysis had PL intensity as same as that of commercial products under long-wavelength UV. Hollow morphology and porous structure of the particles prepared by the flame spray pyrolysis disappeared after posttreatment. Even though the $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by the flame spray pyrolysis had irregular shape, the particles had dense structure and clear surface property.

  • PDF

Structural Variation of Methane/Air Premixed Flame Caused by the Intervention of Ultrasonic Standing-wave (정상 초음파장의 간섭에 의한 메탄/공기 예혼합화염의 구조 변이)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave field on the variation of methane/air premixed flame structure. Visualization technique utilizing the Schlieren method is employed for the observation of premixed flame propagation. The shape of flame front and local flame velocity are measured according to the variation of reactants pressure and chamber opening/closing condition. The flame fronts affected by the standing wave are clearly distorted but the vertical locations of frontal dents do not undergo any appreciable change. The influence of standing wave on the flame front becomes more prominent as the flame propagates downward. It is found that the propagation velocity of flame front with excitation of standing wave is greater than the case without the excitation. It is eventually revealed that the flame is deformed to lotus-shaped one by the vivid interaction of ultrasonic standing-wave with the reflected wave coming from the right side.

A Study on the Flame Shape and the Interaction between Pilot and Main Flames in a Dual Swirl Combustor (이중선회 연소기에서 화염형상과 파일럿과 주 화염의 상호작용에 관한 연구)

  • Jo, Jun-Ik;Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.33-42
    • /
    • 2014
  • Flame behaviors and interaction between pilot and main flames in a dual swirl combustor were investigated experimentally and numerically. Under the condition of fixed swirl angle of $45^{\circ}$ for main flame, the swirl angle of pilot flame, total heat release rate and equivalence ratio of main flame were used as major parameters. As a result, detailed flame stability diagram of dual swirl combustor was identified in terms of 5 flame modes with the changes in total heat release rate and equivalence ratio of main flame. It was found that the swirl angle of pilot flame plays the most important role in the changes in flame location and overall flow structure inside the combustor, and thus leads to the significant change in the interaction between pilot and main flame.

A Study on Combustion Visualizations and Radical Characteristics using Optically Accesible Engine (가시화엔진을 이용한 연소 및 라디칼 특성에 관한 연구)

  • Choi, Su-Jin;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1999
  • A combustion flame visualization system, which is used as an engine diagnostics tool, was developed in order to understand the combustion reaction mechanism in the development stage for S.I. engines. The measurement system consists of an I-CCD camera and a computer-aided image processing system. By using optically accessible engine system, the flame structure was analyzed from the acquired graylevel image and the direction of flame propagation (shape of flame) has been measured to understand combustion phenomena. And combustion radical which involves combustion information were measured. As a result, strong relation between combustion radicals intensity ratio and air excess ratio was found.

  • PDF

A Study on the Characteristics of Flames in a Valve Driven Oscillating Combustion Burner (밸브 구동 진동연소기의 화염특성 연구)

  • Kim, Ki-Seong;Kim, Han-Uk
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The flame patterns were investigated in an oscillating combustion burner equipped with a specially designed proportioning valve. The proportioning valve is driven by a solenoid and has an elastomer part which controls the valve opening area. For characterizing the valve, nozzle exit velocities were measured with a hot wire anemometry. The flame patterns were investigated by direct photographing methods using a high speed camera and a digital camera. The results show that the nozzle exit velocities could be controlled diversely and rapidly changed, so the valve seemed appropriate for the oscillating combustion burner application. Mushroom shape and highly wrinkled structure were typical features of the flames in the oscillating combustion burner. As the oscillating intensity of the fuel flow increased, the flame length was shortened.

  • PDF

The Flame Characteristics by Combustion Chamber Shape in 2 Stroke D.I. Diesel Engine -The Influence of Scavenging Pressure and Scavenging Temperature- (직접분사식 2행정 디젤기관의 연소실 형상에 따른 화염 특성 -소기압력 및 소기온도의 영향을 중심으로-)

  • 최익수;방중철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • In a diesel engine, air-fuel mixture formation and ignition delay period have great influence on the performance of engine. Their main factors are combustion chamber shape, fuel injection system. air volume, air flow and so on. So, the combustion process in the cylinder is complex because of many factors which have direct and indirect effects on it. In this study, we take into consideration of scavenging pressure and scavenging temperature that are hewn as the main factor to the combustion process of two-stroke D.1. diesel engine. It is taken a picture of the combustion flame process for combustion chamber of re-entrant type and cylindrical type. So, it is applied to the basis data of combustion chamber design from an image analysis.

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Local Concentration and Flame Temperature Characteristics of Combustion Product in Premixed LPG/Air Flames (예혼합 LPG/공기화염에서 연소생성물의 국소농도 및 화염온도특성)

  • 김태권;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2001
  • Measurements of local CO, $CO_2$, $O_2$, $N_2$, $C_3$H$_{8}$, NOx concentrations and flame temperature are made for partially premixed flame with and without acoustic excitation. The CO, $CO_2$, $O_2$, $N_2$, and $C$_3$H_8$ concentrations are determined by thermal conductivity detection (Gas-chromatograph) and NOx concentrations are determined by chemiluminescent detection (NOx analyser). To measure local sample concentration, sampling probe was made by quartz with inlet diameter of 0.25mm. In the case of excitation, the visual shape of the flame is changed from laminar flame to turbulent-like flame. The flame length is also reduced, and the flame width becomes broad. In the observation of emission concentration without acoustic excitation, meanwhile, the $CO_2$ and NOx concentrations peak at flame front where the mixture meets with surrounding air, and the CO concentration is increasing at maximum position of CO2 concentration and peaks at the centerline of the burner. In the case of acoustic excitation, the $CO_2$ concentration is widely occurred at nozzle of the burner and is higher relative to unexcitation. The CO concentration is much reduced, but NOx concentration is more increasing. And flame temperature is higher relative to unexcitation. These are caused by enhancing of mixing with surrounding air due to excitation. However, in the case of acoustic excitation, the total NOx concentration is reduced because of the shortened flame length which affects residence time.e.

  • PDF

An Experimental Study on the Flame Characteristics of the Air/$C_3$$H_8$ Premixed Flame Using Large Axial Mean Velocity Variation (급격한 평균유속 변동에 의한 관내 Air/$C_3$$H_8$ 예혼합 화염의 소화특성에 관한 실험적 연구)

  • Kim, Nam-Il;Lee, Eun-Do;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.540-545
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors in which the shape, position and intensity of the flame varied, but more detail and fundamental research has been necessary. The flame stabilization condition in a tube, a unique steady state, and the unsteady behaviors, using the stabilization condition as an initial condition, were carried out in recent years. In this paper, propane-air premixed flame was stabilized in a tube and the flame behavior was observed when the mean velocity variation was imposed into the opposite direction of the initial mean velocity. The velocity variation is larger than the burning velocity and longer than the reaction time scale. During the period of the velocity variation flame is not extinguished. But after the period of the mean velocity variation the flame could be re-stabilized or be extinguished depending on the experimental conditions: equivalence ratio, period of velocity variation and magnitude of velocity variation. The extinction mechanisms were classified into the two cases, one is caused by the flame stretch in the shear layer near the wall, and the other is caused by the vortices and vortexes, which are generted by the acoustic waves.