DOI QR코드

DOI QR Code

A Study on the Flame Shape and the Interaction between Pilot and Main Flames in a Dual Swirl Combustor

이중선회 연소기에서 화염형상과 파일럿과 주 화염의 상호작용에 관한 연구

  • Jo, Jun-Ik (R&D Center, Ssangyong Motor Company) ;
  • Park, Tae-Joon (School of Aerospace Engineering, Sunchon National University) ;
  • Hwang, Cheol-Hong (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Lee, Kee-Man (School of Aerospace Engineering, Sunchon National University)
  • Received : 2013.12.10
  • Accepted : 2014.07.08
  • Published : 2014.08.01

Abstract

Flame behaviors and interaction between pilot and main flames in a dual swirl combustor were investigated experimentally and numerically. Under the condition of fixed swirl angle of $45^{\circ}$ for main flame, the swirl angle of pilot flame, total heat release rate and equivalence ratio of main flame were used as major parameters. As a result, detailed flame stability diagram of dual swirl combustor was identified in terms of 5 flame modes with the changes in total heat release rate and equivalence ratio of main flame. It was found that the swirl angle of pilot flame plays the most important role in the changes in flame location and overall flow structure inside the combustor, and thus leads to the significant change in the interaction between pilot and main flame.

이중선회 연소기에서 다양한 화염거동과 파일럿 화염과 주 화염의 상호작용에 관한 연구가 수행되었다. 주 선회각이 $45^{\circ}$로 고정된 상태에서 파일럿 선회각도, 총 열 발생률 그리고 주 화염의 당량비가 주요 변수로 검토되었다. 주요한 결과로써, 이중선회 연소기의 상세한 화염안정화 영역이 총 발열량과 주화염의 당량비 변화를 통해 발생되는 5가지 화염모드를 통해 확인되었다. 파일럿 화염의 선회각도는 파일럿 화염의 위치 및 연소기 전체의 유동구조에 가장 큰 영향을 미치게 되며, 그 결과 내부 및 외부 화염간의 상호작용의 큰 변화를 가져온다.

Keywords

References

  1. Bahr, D., "Aircraft turbine engine NOx emissions abatement," In F. Culick, M.V. Heitor, J.H. Whitelaw (Eds.), Unsteady Combustion, Kluwer Academic, pp. 234-264, 1995.
  2. Hwang, C.H. and Lee, C.E., "Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor," Journal of the Korean Society for Aeronautical & Space Science, Vol. 34, No. 7, pp. 79-88, 2006. https://doi.org/10.5139/JKSAS.2006.34.7.079
  3. McManus, K.R., Poinsot, T. and Candel, S.M., "A Review of Active Control of Combustion Instabilities," Progress in Energy and Combustion Science, Vol. 19, pp. 1-29, 1993.
  4. Onuma, Y., Yamauchi, T., Mawatari, M., Morikawa, M. and Noda, S., "Low NOx Combustion by a Cyclone-Jet Combustor," JSME Int., Vol. 44, No. 2, pp. 299-304, 2001. https://doi.org/10.1299/jsmeb.44.299
  5. Hwang, C.H., Lee, S.R., Kim, J.H. and Lee, C.E., "An Experimental Study on Flame Stability and Pollutant Emission in a Cyclone Jet Hybrid Combustor," Applied Energy, Vol. 86, No. 8, pp. 1154-1161, 2009. https://doi.org/10.1016/j.apenergy.2008.10.016
  6. Park, T.J., Hwang, C.H. and Lee, K.M., "Development of Hybrid/Dual Jet Combustor for a MGT - Part I : Experimental Study on Geometric Optimization," Journal of The Korean Society of Propulsion Engineers, Vol. 17, No. 5, pp. 60-69, 2013. https://doi.org/10.6108/KSPE.2013.17.5.060
  7. Mun, S.Y., Hwang, C.H. and Lee, K.M., "Development of Hybrid/Dual Swirl Jet Combustor for a MGT - Part II: Numerical Study on Isothermal Flow," Journal of The Korean Society of Propulsion Engineers, Vol. 17, No. 5, pp. 70-79, 2013. https://doi.org/10.6108/KSPE.2013.17.5.070
  8. ANSYS Fluent User's Guide (Release 13.0): ANSYS Inc., Canonsburg, PA, U.S.A., 2010.
  9. Shah, N.G., "A New Method of Computation of Radiation Heat Transfer in Combustion Chambers," Ph.D. Thesis; Imperial College, University of London: England, 1979.