• Title/Summary/Keyword: Shape and Function

Search Result 2,529, Processing Time 0.032 seconds

Behavior of Weld Pool Shape and Weld Surface Deformation as a Function of Spot-GTA Welding Position for 304 Stainless Steel (Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동)

  • Kang, Nam-Hyun;Park, Yeong-Do;Cho, Kyung-Mox;Singh, Jogender;Kulkarni, Anil
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.62-68
    • /
    • 2008
  • Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).

A Study on the Shape Optimal Design of Perforated Plate (다공평판의 형상최적화에 관한 연구)

  • 김형준;권영석;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.731-734
    • /
    • 1997
  • In this study, a shape optimization is performed for circular and elliptical holes to reduce weight of a plate. It is accomplished in reference to the results of topology optimization of the square plate with circular hole. From the results. it is concluded that the stress values of shape optimization of them are satisfied with 100MPa of constraint condition.

  • PDF

Shape Optimization of Waveguide Tee Junction in H-plane (자기 평면 도파관 소자의 최적형상설)

  • 이홍배;한송엽;천창열
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1020-1026
    • /
    • 1994
  • This paper presents a technique to optimize the shape of waveguide components in H-plane. The technique utilizes the numerical optimization process which employs the vector finite element method. In the optimization process, the sensitivity of an objective function with respect to design variables is computed by introducting adjoint variables, which makes the computation easy. The steepest descent method is then employed to update design variables. As a numerical example, an H-plane waveguide teejunction was considered to obtain optimized shape. Comparison between the initial and optimized shape was made.

Statistical Analysis of Bending-Strength Data of Ceramic Matrix Composites : Estimation of Weibull Shape Parameter (세라믹 복합체의 굽힘강도 데이터의 통계적분석 : 와이블 형상모수의 추정과 비교를 중심으로)

  • 전영록
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.17-33
    • /
    • 2001
  • The characteristics of Weibull distribution are investigated as a function of shape parameter. The statistical estimation methods of the shape parameter and statistical comparison methods of two or more shape parameters are studied. Assuming Weibull distribution, statistical analysis of bending-strength data of alumina titanium carbide ceramic matrix composites machined two different methods are performed.

  • PDF

A Method of Determining the Scale Parameter for Robust Supervised Multilayer Perceptrons

  • Park, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.601-608
    • /
    • 2007
  • Lee, et al. (1999) proposed a unique but universal robust objective function replacing the square objective function for the radial basis function network, and demonstrated some advantages. In this article, the robust objective function in Lee, et al. (1999) is adapted for a multilayer perceptron (MLP). The shape of the robust objective function is formed by the scale parameter. Another method of determining a proper value of that parameter is proposed.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho, Yong-Won;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.246-253
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algorithm are searching methods for optimum values. The object of this reserch is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic one, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm

  • PDF

Shape Recognition and Classification Based on Poisson Equation- Fourier-Mellin Moment Descriptor

  • Zou, Jian-Cheng;Ke, Nan-Nan;Lu, Yan
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, we present a new shape descriptor, which is named Poisson equation-Fourier-Mellin moment Descriptor. We solve the Poisson equation in the shape area, and use the solution to get feature function, which are then integrated using Fourier-Mellin moment to represent the shape. This method develops the Poisson equation-geometric moment Descriptor proposed by Lena Gorelick, and keeps both advantages of Poisson equation-geometric moment and Fourier-Mellin moment. It is proved better than Poisson equation-geometric moment Descriptor in shape recognition and classification experiments.

AN AVERAGE OF SURFACES AS FUNCTIONS IN THE TWO-PARAMETER WIENER SPACE FOR A PROBABILISTIC 3D SHAPE MODEL

  • Kim, Jeong-Gyoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.751-762
    • /
    • 2020
  • We define the average of a set of continuous functions of two variables (surfaces) using the structure of the two-parameter Wiener space that constitutes a probability space. The average of a sample set in the two-parameter Wiener space is defined employing the two-parameter Wiener process, which provides the concept of distribution over the two-parameter Wiener space. The average defined in our work, called an average function, also turns out to be a continuous function which is very desirable. It is proved that the average function also lies within the range of the sample set. The average function can be applied to model 3D shapes, which are regarded as their boundaries (surfaces), and serve as the average shape of them.

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF