• Title/Summary/Keyword: Shape Signature

Search Result 52, Processing Time 0.033 seconds

ENERGY SPECTRUM OF NONTHERMAL ELECTRONS ACCELERATED AT A PLANE SHOCK

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49-58
    • /
    • 2011
  • We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields, using time-dependent, diffusive shock acceleration (DSA) simulations, including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum $p_{eq}$. In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as $p^{-1}$. Thus the slope of the downstream integrated spectrum steepens by one power of p for $p_{br}$ < p < $p_{eq}$, where the break momentum decreases with the shock age as $p_{br}\;{\infty}\;t^{-1}$. In a CR modified shock, both the proton and electron spectrum exhibit a concave curvature and deviate from the canonical test-particle power-law, and the upstream integrated electron spectrum could dominate over the downstream integrated spectrum near the cutoff momentum. Thus the spectral shape near the cutoff of X-ray synchrotron emission could reveal a signature of nonlinear DSA.

Effects of Nozzle Characteristics on the Rear Fuselage Temperature Distribution (노즐 특성에 따른 후방동체 온도 변화 연구)

  • Yi, Kyung-Joo;Baek, Seung-Wook;Lee, Sung-Nam;Kim, Man-Young;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1141-1149
    • /
    • 2011
  • In order to enhance the aircraft survivability, infrared signatures emitted by engine parts should be diminished. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer of nozzle is performed and its temperature distribution along each component wall is predicted. The effects of material characteristics and shape of nozzle wall and radiation shield on the heat transfer are also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

Robust Face Detection Based on Knowledge-Directed Specification of Bottom-Up Saliency

  • Lee, Yu-Bu;Lee, Suk-Han
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.600-610
    • /
    • 2011
  • This paper presents a novel approach to face detection by localizing faces as the goal-specific saliencies in a scene, using the framework of selective visual attention of a human with a particular goal in mind. The proposed approach aims at achieving human-like robustness as well as efficiency in face detection under large scene variations. The key is to establish how the specific knowledge relevant to the goal interacts with the bottom-up process of external visual stimuli for saliency detection. We propose a direct incorporation of the goal-related knowledge into the specification and/or modification of the internal process of a general bottom-up saliency detection framework. More specifically, prior knowledge of the human face, such as its size, skin color, and shape, is directly set to the window size and color signature for computing the center of difference, as well as to modify the importance weight, as a means of transforming into a goal-specific saliency detection. The experimental evaluation shows that the proposed method reaches a detection rate of 93.4% with a false positive rate of 7.1%, indicating the robustness against a wide variation of scale and rotation.

An Analysis of Pulse Length Effect on Underwater Simulated Target Strength Estimated Model (수중 모의표적 강도예측 모델의 펄스길이 효과 고찰)

  • 김부일;박명호;권우현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.44-51
    • /
    • 2001
  • This Paper the practical echo signal synthesis model to predict the target strength and signal shape of a submarine for a valuable tool to active sonar engineer. It is based on UTAHID (Underwater TArget by Highlight Distribution) model which is relocated highlight points along to external hull for aspect angle, and synthesized echo signal by modified grouping highlights to internal scatter cloud. Proposed model is analyzed target strength characteristics on various incident pulse length, and synthesis signal signature, target time spreading loss, echo elongation effect and so on. Thus it can be efficiently used in various real systems related to underwater target echo signal synthesis, that is, active sonar, acoustic countermeasure and surveillance system.

  • PDF

Detection of Thermal Plume Signature in and around the Younggwang coastal waters of Korea using LANDSAT & NOAA Thermal Infrared Data

  • Ahn, Yu-Hwan;Shanmugam, P.;Lee, Jae-Hak;Kang, Yong Q.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.869-872
    • /
    • 2003
  • The thermal contamination of the Younggwang coastal marine ecosystem has been investigated using space borne thermal infrared data acquired over the period 1985-2003 by the Landsat and NOAA satellites. The analysis of AVHRR data brought out the general pattern and extension of thermal plume while TM data yielded more accurate information about the plume shape, dimension, dispersion direction etc. The examination of sea surface temperature (SST) computed from these images clearly indicates that the thermal plume extends 70 to100km southward during summer and 50 to70km northwestward during winter monsoons. The maximum plume temperature was 29$^{\circ}C$ in summer and 12$^{\circ}C$ in winter. The comparative analysis shows that the temperature retrieved from TM is slightly higher (1.8$^{\circ}C$, 3$^{\circ}C$ and 2.2$^{\circ}C$ for the images of 98/11/10, 99/05/05 and 99/05/21 respectively) than those derived from AVHRR data. The correlation coefficient between the TM-derived SST and AVHRR-derived SST was 0.72.

  • PDF

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

A Study on the Design Changes and the Acceptance of Identity on Luxury Brand Bags -Focusing on the Fashion Collections of Louis Vuitton, Gucci, and Chanel-

  • Choi, Jin-Hee;Lee, Mi-Suk
    • Journal of Fashion Business
    • /
    • v.20 no.6
    • /
    • pp.111-134
    • /
    • 2016
  • A luxury brand bag is a medium to symbolize brand identity and plays a role in enhancing brand value. A typical example is a designer signature bag such as Hermes Kelly Bag, Birkin Bag, and Lady Dior Bag. The purpose of this study is to analyze the design changes and acceptance of identity of luxury brand bags and examine the design characteristics that succeed to the value of a luxury brand bag. The subjects of the study focused on Louis Vuitton, Gucci, and Chanel bags. Photos were collected from www.vogue.co. uk. based on the fashion collections from S/S 2007 to S/S 2016. The study methodology was to analyze the kinds, shapes, colors, materials, and the ornament of subject bags based on previous studies. The results of the study were summarized as follows. For the identity and design changes of each brand, Chanel has tried to combine functionality pursued in the past with constantly changing femininity by making bags in fantastic moods using various materials and free shapes. Gucci has constantly used Ornament elements holding the brand identity of classic bags and trend colors to keep tradition. Louis Vuitton holds fast to its functional shape to protect brand identity through design philosophy that started with a travel luggage and attempts to express modern emotion through Ornament changes. This study confirmed that luxury brands have accepted their unique design characteristics holding brand identity to improve their brand value and attempted to change constructive elements in many different ways for modern reinterpretation.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Object Detection Method on Vision Robot using Sensor Fusion (센서 융합을 이용한 이동 로봇의 물체 검출 방법)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.249-254
    • /
    • 2007
  • A mobile robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. We focus on how to detect a object region well using image processing algorithm because it gives robots the ability of working for human. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. Shape information and signature algorithm are used to segment the objects from background regardless of shape changes. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.