Browse > Article
http://dx.doi.org/10.5303/JKAS.2011.44.2.49

ENERGY SPECTRUM OF NONTHERMAL ELECTRONS ACCELERATED AT A PLANE SHOCK  

Kang, Hye-Sung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.44, no.2, 2011 , pp. 49-58 More about this Journal
Abstract
We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields, using time-dependent, diffusive shock acceleration (DSA) simulations, including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum $p_{eq}$. In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as $p^{-1}$. Thus the slope of the downstream integrated spectrum steepens by one power of p for $p_{br}$ < p < $p_{eq}$, where the break momentum decreases with the shock age as $p_{br}\;{\infty}\;t^{-1}$. In a CR modified shock, both the proton and electron spectrum exhibit a concave curvature and deviate from the canonical test-particle power-law, and the upstream integrated electron spectrum could dominate over the downstream integrated spectrum near the cutoff momentum. Thus the spectral shape near the cutoff of X-ray synchrotron emission could reveal a signature of nonlinear DSA.
Keywords
cosmic ray acceleration-shock wave-hydrodynamics-methods; numerical;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The Case of SN 1006, A&A, 505, 169   DOI   ScienceOn
2 Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic_Ray Origin, Phys. Rept., 154, 1   DOI   ScienceOn
3 Reynolds, S. P. 2008, Supernova Remnants at High Energy, ARA&A, 46, 89   DOI   ScienceOn
4 Zirakashvili V. N., & Aharonian F. A. 2007, Analytical Solutions for Energy Spectra of Electrons Accelerated by Nonrelativistic Shock-Waves in Shell Type Supernova Remnants, A&A, 465, 695   DOI   ScienceOn
5 Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557   DOI
6 Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Ampli¯cation in Tycho and Other Shell-Type Supernova Remnants, A&A, 433, 229   DOI   ScienceOn
7 Webb, G. M., Drury, L. O'C., & Biermann, P. 1984, Diffusive Shock Acceleration of Energetic Electrons Subject to Synchrotron Losses, A&A, 137, 185
8 Heavens, A. F., & Meisenheimer, K. 1987 Particle Acceleration in Extrgalactic Sources: the Role of Synchrotron Losses in Determining the Spectrum, MNRAS, 225, 335   DOI
9 Blasi, P. 2010, Shock Acceleration of Electrons in the Presence of Synchrotron Losses - I. Test-Particle Theory, MNRAS, 402, 2807   DOI   ScienceOn
10 Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973   DOI   ScienceOn
11 Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks, ApJ, 413, 619   DOI
12 Kang, H. 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
13 Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI
14 Kang, H. & Jones, T. W. 2007, Self-Similar Evolution of Cosmic-Ray-Modi¯ed Quasi-Parallel Plane Shocks, Astropart. Phys, 28, 232   DOI   ScienceOn
15 Kang, H., Ryu, D., & Jones, T. W. 2009, Self-Similar Evolution of Cosmic-ray Modified Shocks:The Cosmic-Ray Spectrum, ApJ, 695, 1273   DOI
16 Kang, H., & Ryu, D. 2010, Diffusive Shock Acceleration in Test-particle Regime, ApJ, 721, 886   DOI
17 Longair, M. S. 1994, High Energy Astrophysics, Volume 2. (Cambridge Univ. Press, Cambridge, 1994)
18 Malkov M. A., & Drury, L.O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429   DOI   ScienceOn
19 Abdo, A. A. et al. 2010, Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT, Science, 327, 1103   DOI   ScienceOn
20 Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Am- plified Magnetic Field and Maximum Energy, A&A, 453, 387   DOI   ScienceOn
21 Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147   DOI
22 Berezhko E. G., Ksenofontov L.T., & Volk, H. J. 2002, Emission of SN 1006 Produced by Accelerated Cosmic Rays, A&A, 395, 943   DOI   ScienceOn