• Title/Summary/Keyword: Shape Iteration Method

Search Result 70, Processing Time 0.029 seconds

Study on Shape Optimization Using Finite Elements Addition and Removal (요소가감법을 이용한 형상최적설계에 관한 연구)

  • Kim, Young-Jin;Lim, Kyeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.486-491
    • /
    • 2000
  • In this study, finite elements addition and removal method by stress range is applied to optimize shapes in structures, without using classical and numerical optimization methods and search methods. The program based on this algorithm is developed and compared to theoritial results with considerable accuracy. Classical methods need mesh generation for finite element analysis for every iteration, the developed method needs updated mesh data such as coordinates of nodes, elements connectivity, and loads on nodes. And other tools of finite element analysis can be in use as a black box to interface with this program.

  • PDF

Development of Program for Electro-Magnetic Analysis in Superconducting Bulk (초전도 벌크내의 전자장 해석 프로그램 개발)

  • 한승용;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.85-88
    • /
    • 1999
  • The study of HTS bulk in permanent magnet applications requires the calculation of forces acting on the bulk. Currents distribution in HTS Superconducting bulk is very important to determine this forces. We have made computer program to find this current distribution and this program is applied to some simple disc-shape HTS bulk being magnetised in a uniform field. The techniques for determination of currents are FEM analysis and iteration method.

  • PDF

Dynamically equivalent element for an emboss embeded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.1-335
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. (omitted)

  • PDF

An analysis of progressing buckles of thin compressed beam with contact treatment (접촉을 고려한 보의 탄소성 좌굴진행 해석)

  • 김종봉;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.28-31
    • /
    • 1997
  • Buckling analysis of thin compressed beam has been carried out. Pre-buckling and post-buckling are simulated by finite element method incorporating with the incremental nonlinear theory and the Newton-Raphson solution technique. In order to find the bifurcation point, the determinent of the stiffness matrix is calculated at every iteration procedure. For post-buckling analysis, a small perturbed initial guess is given along the eigenvector direction at the bifurcation point. Nonlinear elastic buckling and elastic-plastic buckling of cantilever beam are analyzed. The buckling load and buckled shape of the two models are compared.

  • PDF

Lip Shape Representation and Lip Boundary Detection Using Mixture Model of Shape (형태계수의 Mixture Model을 이용한 입술 형태 표현과 입술 경계선 추출)

  • Jang Kyung Shik;Lee Imgeun
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1531-1539
    • /
    • 2004
  • In this paper, we propose an efficient method for locating human lips. Based on Point Distribution Model and Principle Component Analysis, a lip shape model is built. Lip boundary model is represented based on the concatenated gray level distribution model. We calculate the distribution of shape parameters using Gaussian mixture. The problem to locate lip is simplified as the minimization problem of matching object function. The Down Hill Simplex Algorithm is used for the minimization with Gaussian Mixture for setting initial condition and refining estimate of lip shape parameter, which can refrain iteration from converging to local minima. The experiments have been performed for many images, and show very encouraging result.

  • PDF

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.

Efficient Method for Selecting Ground Motions with a Mean Response Spectrum Matching a Target Spectrum (목표스펙트럼에 근사한 평균응답스펙트럼을 갖는 지반운동집단의 효율적인 선정방법)

  • Han, Sang-Whan;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes an efficient method for selecting ground motions with the mean response spectrum matching a target spectrum. Since former studies reported that the shape and amplitude of the response spectra can be treated independently for selecting ground motions, this study first selects ground motions such that the shape of their mean response spectrum matches that of the target spectrum, then scales the ground motions. To select the ground motions best matching the shape of the target response spectrum, the standard deviation of the difference between the target response spectrum and the mean response spectrum of the selected ground motions needs to be minimized. Unlike the existing procedure, the scaling factor can be computed without iteration. Based on the selection results of 7 ground motions from a library of 40 ground motions, the proposed method is verified as an accurate and efficient method.

Electromagnetic field analysis in MWO using computational method (수치해석을 이용한 전자렌지 내의 전자계 해석)

  • Park, Kwang-Soo;Shon, Jong-Chull;Kim, Sang-Gweon;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1893-1895
    • /
    • 1997
  • This paper presents an analysis of the electromagnetic field in the 3D microwave oven using computational method. The model is accounted the real shape, including the formings, input waveguide with the magnetron, tray, and so on. For quantisation of this problem, Galerkin method with the Nedelec's edge basic functions is used. The system of linear algebraic equations is solved by the iteration method. The simulation results were compared with the experimental results.

  • PDF

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.