Browse > Article
http://dx.doi.org/10.12989/scs.2020.36.1.031

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm  

Wang, Shuqing (Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China)
Jiang, Yufeng (Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China)
Xu, Mingqiang (Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China)
Li, Yingchao (College of Civil Engineering, Ludong University)
Li, Zhixiong (Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China)
Publication Information
Steel and Composite Structures / v.36, no.1, 2020 , pp. 31-45 More about this Journal
Abstract
The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.
Keywords
damage identification; modal energy; beetle antennae search; iterative two-stage method; objective function; noise robustness;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Hakim, S.J.S. and Razak, H.A. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel. Compos. Struct., 14(4), 367-377. https://doi.org/10.12989/scs.2013.14.4.367.   DOI
2 Hu, S.L.J., Wang, S.Q. and Li, H.J. (2006), "Cross-modal strain energy method for estimating damage severity", J. Eng. Mech., 132(4), 429-437. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:4(429).   DOI
3 Holland, J. (1973), "Genetic algorithms and the optimal allocation of trials", SIAM. J. Comput., 2(2), 88-105. https://doi.org/10.1137/0202009.   DOI
4 Jiang, X.Y. and Li, S. (2017), "BAS: beetle antennae search algorithm for optimization problems", arXiv preprint, arXiv: 1710.10724. https://doi.org/10.5430/ijrc.v1n1p1.
5 Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft. Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.   DOI
6 Kaveh, A. and Zolghadr, A. (2017), "Cyclical Parthenogenesis Algorithm for guided modal strain energy based structural damage detection", Appl. Soft. Comput., 57, 250-264. https://doi.org/10.1016/j.asoc.2017.04.010.   DOI
7 Alamdari, M.M., Li, J. and Samali, B. (2015), "Damage identification using 2-D discrete wavelet transform on extended operational mode shapes", Arch. Civ. Mech. Eng., 15(3), 698-710. https://doi.org/10.1016/j.acme.2014.12.001.   DOI
8 Casciati, S. and Elia, L. (2017), "Damage localization in a cable-stayed bridge via bio-inspired metaheuristic tools", Struct. Control. Health. Monit., 24(5), e1922. https://doi.org/10.1002/stc.1922.   DOI
9 Cha, Y.J. and Buyukozturk, O. (2015), "Structural damage detection using modal strain energy and hybrid multi-objective optimization", Comput-Aided. Civ. Inf., 30(5), 347-358. https://doi.org/10.1111/mice.12122.   DOI
10 Chaabane, M., Mansouri, M., Ben Hamida, A., Nounou, H. and Nounou, M. (2019), "Multivariate statistical process control-based hypothesis testing for damage detection in structural health monitoring systems", Struct. Control. Health. Monit., 26(1), e2287. https://doi.org/10.1002/stc.2287.   DOI
11 Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlin. Mech., 47(1), 1-8. https://doi.org/10.1016/j.ijnonlinmec.2011.07.011.   DOI
12 Karaboga, D. and Basturk, B. (2008), "On the performance of artificial bee colony (ABC) algorithm", Appl. Soft. Comput., 8(1), 687-697. https://doi.org/10.1016/j.asoc.2007.05.007.   DOI
13 Perera, R., Fang, S.E. and Huerta, C. (2009), "Structural crack detection without updated baseline model by single and multi-objective optimization", Mech. Syst. Signal. Pr., 23(3), 752-768. https://doi.org/10.1016/j.ymssp.2008.06.010.   DOI
14 Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019.   DOI
15 Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel. Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/scs.2017.25.4.485.   DOI
16 Cornwell, P., Doebling, S.W. and Farrar, C.R. (1999), "Application of the strain energy damage detection method to plate-like structures", J. Sound. Vib., 224(2), 359-374. https://doi.org/10.1006/jsvi.1999.2163.   DOI
17 Dessi, D. and Camerlengo, G. (2015), "Damage identification techniques via modal curvature analysis: overview and comparison", Mech. Syst. Signal. Pr., 52, 181-205. https://doi.org/10.1016/j.ymssp.2014.05.031.   DOI
18 Dinh-Cong, D., Nguyen-Thoi, T., Vinyas, M. and Nguyen, D.T. (2019a), "Two-stage structural damage assessment by combining modal kinetic energy change with symbiotic organisms search", Int. J. Struct. Stab. Dy., 19(10), 1950120. https://doi.org/10.1142/S0219455419501207.   DOI
19 Meruane, V. and Mahu, J. (2014), "Real-time structural damage assessment using articial neural networks and antiresonant frequencies", Shock. Vib., 2014, 1-14. https://doi.org/10.1155/2014/653279.   DOI
20 Messina, A., Jones, I.A. and Williams, E.J. (1996), "Damage detection and localization using natural frequency changes", Proceedings of Conference on Identification in Engineering Systems, Swansea, UK, March.
21 Oliveira, G., Magalhaes, F., Cunha, A. and Caetano, E. (2018), "Vibration-based damage detection in a wind turbine using 1 year of data", Struct. Control. Health. Monit., 25, e2238. https://doi.org/10.1002/stc.2238.   DOI
22 Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound. Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002.   DOI
23 Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound. Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B.   DOI
24 Srinivas, V., Ramanjaneyulu, K. and Jeyasehar, C.A. (2011), "Multistage approach for structural damage identification using modal strain energy and evolutionary optimization techniques", Struct. Health. Monit., 10(2), 219-230. https://doi.org/10.1177/1475921710373291.   DOI
25 Stubbs, N., Kim, J.T. and Farrar, C.R. (1995), "Field verification of a nondestructive damage localization and severity estimation algorithm", Proceedings of the International Modal Analysis Conference, Bethel, Conn, USA, February.
26 Tang, H., Zhang, W., Xie, L. and Xue, S. (2013), "Multi-stage approach for structural damage identification using particle swarm optimization", Smart. Struct. Syst., 11(1), 69-86. https://doi.org/10.12989/sss.2013.11.1.069.   DOI
27 Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration based structural damage detection", Mech. Syst. Signal. Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002.   DOI
28 Frigui, F., Faye, J.P., Martin, C., Dalverny, O., Peres, F. and Judenherc, S. (2018), "Global methodology for damage detection and localization in civil engineering structures", Eng. Struct., 171, 686-695. https://doi.org/10.1016/j.engstruct.2018.06.026.   DOI
29 Ghiasi, R. and Ghasemi, M.R. (2018). "An intelligent health monitoring method for processing data collected from the sensor network of structure", Steel. Compos. Struct., 29(6), 703-716. https://doi.org/10.12989/scs.2018.29.6.703.   DOI
30 Xu, M.Q., Wang, S.Q. and Jiang, Y.F. (2019), "Iterative two-stage approach for identifying structural damage by combining the modal strain energy decomposition method with the multi-objective particle swarm optimization algorithm", Struct. Control. Health. Monit., 26(2), e2301. https://doi.org/10.1002/stc.2301.   DOI
31 Wang, S.Q., Li, H.J. and Hu, S.L.J. (2009), "Cross modal strain energy method for damage localization and severity estimation", Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, June.
32 Wang, S.Q. and Liu, F.S. (2010), "New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm", Struct. Eng. Mech., 34(5), 625-634. https://doi.org/10.12989/sem.2010.34.5.625.   DOI
33 Wang, S.Q., Wang, H.Y. and Xu, M.Q. (2020), "Identifying the presence of structural damage: a statistical hypothesis testing approach combined with residual strain energy", Mech. Syst. Signal. Pr., 140, 106655. https://doi.org/10.1016/j.ymssp.2020.106655.   DOI
34 Wang, S.Q. and Xu, M.Q. (2019), "Modal strain energy-based structural damage identification: a review and comparative study", Struct. Eng. Int., 29(2), 234-248. https://doi.org/10.1080/10168664.2018.1507607.   DOI
35 Dinh-Cong, D., Vo-Van, L., Nguyen-Quoc, D. and Nguyen-Thoi T. (2019c), "Modal kinetic energy change ratio-based damage assessment of laminated composite beams using noisy and incomplete measurements", J. Adv. Eng. Comput., 3(3), 452-463. https://doi.org/10.25073/jaec.201933.248.   DOI
36 Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA. J., 3(2), 380. https://doi.org/10.2514/3.2874.   DOI
37 Wang, S.Q., Xu, M.Q., Xia, Z.P. and Li, Y.C. (2019), "A novel Tikhonov regularization-based iterative method for structural damage detection of offshore platforms", J. Mar. Sci. Tech., 24(2), 575-592. https://doi.org/10.1007/s00773-018-0579-6.   DOI
38 Xu, Y., Qian, Y., Song, G. and Guo, K. (2015), "Damage detection using finite element model updating with an improved optimization algorithm", Mech. Syst. Signal. Pr., 19(1), 191-208. https://doi.org/10.12989/scs.2015.19.1.191.
39 Dinh-Cong, D., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019b), "Damage assessment in plate-like structures using a two-stage method based on modal strain energy change and Jaya algorithm", Inverse. Probl. Sci. En., 27(2), 166-189. https://doi.org/10.1080/17415977.2018.1454445.   DOI
40 Dinh-Cong, D., Vo-Duy T. and Nguyen-Thoi T. (2018), "Damage assessment in truss structures with limited sensors using a two-stage method and model reduction", Appl. Soft. Comput., 66, 264-277. https://doi.org/10.1016/j.asoc.2018.02.028.   DOI
41 Dorigo, M. and Di Caro, G. (1999), "Ant colony optimization: a new meta-heuristic", Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, July.
42 Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9.   DOI
43 Vo-Duy, T., Ho-Huu, V., Dang-Trung, H. and Nguyen-Thoi, T. (2016), "A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm", Compos. Struct., 147, 42-53. https://doi.org/10.1016/j.compstruct.2016.03.027.   DOI
44 Li, H.J., Fang, H. and Hu, S.L.J. (2007), "Damage localization and severity estimate for three-dimensional frame structures", J. Sound. Vib., 301(3-5), 481-494. https://doi.org/10.1016/j.jsv.2006.08.042.   DOI
45 Meruane, V. and Heylen, W. (2011), "An hybrid real genetic algorithm to detect structural damage using modal properties", Mech. Syst. Signal. Pr., 25(5), 1559-1573. https://doi.org/10.1016/j.ymssp.2010.11.020.   DOI
46 Shabbir, F. and Omenzetter, P. (2016), "Model updating using genetic algorithms with sequential niche technique", Eng. Struct., 120, 166-182. https://doi.org/10.1016/j.engstruct.2016.04.028.   DOI
47 Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.   DOI
48 Villalba, J.D. and Laier, J.E. (2012), "Localizing and quantifying damage by means of a multi-chromosome genetic algorithm", Adv. Eng. Softw., 50, 150-157. https://doi.org/10.1016/j.advengsoft.2012.02.002.   DOI
49 Wang, S.Q. and Li, H.J. (2012), "Assessment of structural damage using natural frequency changes", Acta. Mech. Sin., 28(1), 118-127. https://doi.org/10.1007/s10409-012-0017-7.   DOI
50 Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
51 Shi, Z.Y., Law, S.S. and Zhang, L.M. (1998), "Structural damage localization from modal strain energy change", J. Eng. Mech., 218(5), 825-844. https://doi.org/10.1006/jsvi.1998.1878.
52 Shirazi, M.N., Mollamahmoudi, H. and Seyedpoor, S.M. (2014), "Structural damage identification using an adaptive multi-stage optimization method based on a modified particle swarm algorithm", J. Optimiz. Theory. App., 160(3), 1009-1019. https://doi.org/10.1007/s10957-013-0316-6.   DOI
53 Xu, M.Q. and Wang, S.Q. (2017), "Cross modal strain energy-based structural damage detection in the presence of noise effects", Adv. Mech. Eng., 9(12). https://doi.org/10.1177/1687814017744122.