• Title/Summary/Keyword: Shape Engineering

Search Result 12,831, Processing Time 0.04 seconds

Numerical Analysis of Resin Filling Process for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 제작을 위한 수지 충진 해석 연구)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.511-517
    • /
    • 2016
  • Current oil-type potential transformers for trains are filled with insulating oil, which could have problems like explosions due to rising inner pressure during train operation. Therefore, mold and dry-type potential transformers are being developed to prevent explosions. One problem in manufacturing mold-type transformers is preventing void formation around the coiled core inside the mold during epoxy filling, which could cause an electrical spark. Micro voids can remain in the resin after filling, and macro voids can occur due to the structure shape. A transformer that is being developed has a cavity at the junction of the core and the coil for better performance, and when highly viscous epoxy flows inside the cavity channel, macro voids can form inside it. Therefore, in this study, the free-surface flow of the mold filling procedure was analyzed numerically by applying the VOF method. The results were used to understand the phenomena of void formation inside the cavity and to modify the process conditions to reduce voids.

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Feasibility Evaluation of Number of Gyration for HMA and WMA Mixtures (HMA와 WMA 혼합물의 선회 다짐횟수 적정성 검토 연구)

  • Lee, Moon-Sup;Yoon, Chun-Joo;Kwon, Soo-Ahn;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.133-142
    • /
    • 2011
  • The objective of this study is to validate the number of gyrations of Superpave gyratory compactor(SGC) for compaction of hot-mix asphalt (HMA) and warm-mix asphalt(WMA) mixtures. Marshall compaction was also used for comparison purpose. The 13mm and 19mm aggregates of 1st class quality shape were used. A PG64-22 and a PG76-22 for HMA and a PG70-22 for WMA. Four compaction temperatures based on the suggested value were used for each binder using 100 gyrations for SGC and 75 blows per side for Marshall compactor. It was found that SGC compaction was somewhat better than Marshall compaction. The analysis of variance showed that two compactors were significantly different in air voids of 19mm mixtures at ${\alpha}=0.05$ level. The 13mm mixture did not show a significant statistical difference. When compacted at the temperature below a certain level, however, the compaction of two compactors were fond to be proor. Therefore, observing compaction temperature above the minimum level is important to secure proper compaction work. If the minimum temperatures were maintained, 100 gyrations, which was given for HMA of arterial road pavement by the Korean Guide, was found to be appropriate compaction, showing similar or better compaction work than 75 blows per side of Marshall compaction.

Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography (디지털 유방영상에서 미세석회화의 자동군집화 기법 개발)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  • PDF

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Improvement of Public Announcement of Topographical Drawing for Linear-Type Infrastructure (선형형태 사회기반시설물의 지형도면 고시 개선방안)

  • Moon, Jung Kyun;Kwon, Hun Yeong;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1327-1334
    • /
    • 2014
  • Linear form of public works such as roads, railways and rivers, generally used as long work crossing administrative districts, can be several hundreds km length and narrow. These linear forms use SCM sheets, which do not include the quadrangle shape, to make a public announcement of topographical drawing in order to get the work approval. the Integrated measurement channel investigation and cadastral act that are established in 2009 apply the ITRF for the composition of design and construction books and coordinates of topographical map in order to get the work approval. However according to the article 5 of additional clause, while the cadastre is maintaining local coordinates, if there is a technical error in the content of the Public Announcement of Topographical Drawing that used the SCM, the question of responsibility of land borders and the efficacy or not of the announcement is raised as an administrative measure. After analysing the causes and enforcing coordinate conversion and correction taking into account linear form work's features, the result was reflected in the existing SCM. As a conclusion, the present study proposes the improvement of the procedures of the Public Announcement of Topographical Drawing.

Rheological Characteristics and Debris Flow Simulation of Waste Materials (광산폐석의 유변학적 특성과 토석류 흐름특성 분석)

  • Jeong, Sueng Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1227-1240
    • /
    • 2014
  • Abandoned mines often cause environmental problems, such as alteration of landscape, metal contamination, and landslides due to a heavy rainfall. Geotechnical and rheological tests were performed on waste materials corrected from Imgi waste rock dump, located in Busan Metropolitan City. Debris flow mobility was examined with the help of 1-D BING model which was often simulated in both subaerial and subaqueous environments. To determine flow curve, we used a vane-penetrated rheometer. The shear stress (${\tau}$)-shear rate (${\dot{\gamma}}$) and viscosity(${\eta}$)-shear rate (${\dot{\gamma}}$) relationships were plotted using a shear stress control mode. Well-known rheological models, such as Bingham, bilinear, Herschel-Bulkley, Power-law, and Papanastasiou concepts, were compared to the rheological data. From the test results, we found that the tested waste materials exhibited a typical shear shinning behavior in ${\tau}$-${\dot{\gamma}}$ and and ${\eta}$-${\dot{\gamma}}$ plots, but the Bingham behavior is often observed when the water contents increased. The test results show that experimental data are in good agreement with rheological models in the post-failure stage during shearing. Based on the rheological properties (i.e., Bingham yield stress and viscosity as a function of the volumetric concentration of sediment) of waste materials, initial flowing shape (5 m, 10 m, and 15 m) and yield stress (100 Pa, 200 Pa, 300 Pa, and 500 Pa) were input to simulate the debris flow motion. As a result, the runout distance and front velocity of debris flow are in inverse propositional to yield stress. In particular, when the yield stress is less than 500 Pa, most of failed masses can flow into the stream, resulting in a water contamination.

A Study on the Accuracy Analysis of Position Measurement Target for Underground Facilities by Retro-reflection (재귀반사체를 이용한 지하시설물 위치측정 타깃의 정확도 분석에 관한 연구)

  • Min, Kwan Sik;Kim, Jae Myeong;Choi, Yun Soo
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • Recently 3D surveying is recommended to manage underground facilities systematically before refilling of site operation. As the demand of realtime localization increases, cost reduction and consistent data construction which are realizable by using one man surveying method with unmanned target, are necessary for constructing DB of all sorts of the underground facilities with more speediness and correctness. This study sets a goal to develop a new type of surveying target which allows realtime localization to be performed by one man, through making an optimum reflector(triangle, quadrangle, and semispherical shape) by using the retro-reflection principle of optical prism which is being used for surveying currently. The new surveying target makes realtime surveying possible. To check reliability of its data, the accuracy is compared with surveying coordination of total station for each type in a quantitative method. In the result, the usefulness of the reflector for Underground Facilities localization is proved. Thus the foundation for underground DB construction conducted by one man is established for acquisition of 3D location information in more efficient way through using unmanned target.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis (마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작)

  • Kim, Tae-Ha;Kim, Da-Young;Chun, Myung-Suk;Lee, Sang-Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.513-519
    • /
    • 2006
  • We developed two kinds of the microchip for application to electrophoresis based on both glass and quartz employing the MEMS fabrications. The poly-Si layer deposited onto the bonding interface apart from channel regions can play a role as the optical slit cutting off the stray light in order to concentrate the UV ray, from which it is possible to improve the signal-to-noise (S/N) ratio of the detection on a chip. In the glass chip, the deposited poly-Si layer had an important function of the etch mask and provided the bonding surface properly enabling the anodic bonding. The glass wafer including more impurities than quartz one results in the higher surface roughness of the channel wall, which affects subsequently on the microflow behavior of the sample solutions. In order to solve this problem, we prepared here the mixed etchant consisting HF and $NH_4F$ solutions, by which the surface roughness was reduced. Both the shape and the dimension of each channel were observed, and the electroosmotic flow velocities were measured as 0.5 mm/s for quartz and 0.36 mm/s for glass channel by implementing the microchip electrophoresis. Applying the optical slit with poly-Si layer provides that the S/N ratio of the peak is increased as ca. 2 times for quartz chip and ca. 3 times for glass chip. The maximum UV absorbance is also enhanced with ca. 1.6 and 1.7 times, respectively.