• Title/Summary/Keyword: Shape Decomposition

Search Result 229, Processing Time 0.032 seconds

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF

Numerical study on the design of urea decomposition chamber in LP SCR system

  • Um, Hyung Sik;Kim, Daehee;Kim, Keon Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.307-313
    • /
    • 2019
  • In order to design efficient Urea Decomposition Chamber (UDC) for the Low Pressure (LP) Selective Catalytic Reduction (SCR) system, numerical simulations were conducted with respect to various design parameters. The design parameters examined in this simulation include the chamber diameter, inlet and outlet shape of chamber, and urea injection point. Reaction kinetics for the urea decomposition was proposed and validated with the experimental data in the range of $300{\sim}450^{\circ}C$. The effects of design parameters on the performance of UDC were evaluated by the calculated urea conversion and pressure drop. As a result, the local optimum design values were derived by the parametric study.

Dynamic Instability and Instantaneous Frequency of a Shallow Arch With Asymmetric Initial Conditions (비대칭 초기 조건을 갖는 얕은 아치의 동적 불안정과 순시 주파수 변화)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2020
  • This paper examined the dynamic instability of a shallow arch according to the response characteristics when nearing critical loads. The frequency changing feathers of the time-domain increasing the loads are analyzed using Fast Fourier Transformation (FFT), while the response signal around the critical loads are analyzed using Hilbert-Huang Transformation (HHT). This study reveals that the models with an arch shape of h = 3 or higher exhibit buckling, which is very sensitive to the asymmetric initial conditions. Also, the critical buckling load increases as the shape increases, with its feather varying depending on the asymmetric initial conditions. Decomposition results show the decrease in predominant frequency before the threshold as the load increases, and the predominant period doubles at the critical level. In the vicinity of the critical level, sections rapidly manifest the displacement increase, with the changes in Instantaneous Frequency (IF) and Instant Energy (IE) becoming apparent.

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

3-D shape and motion recovery using SVD from image sequence (동영상으로부터 3차원 물체의 모양과 움직임 복원)

  • 정병오;김병곤;고한석
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.176-184
    • /
    • 1998
  • We present a sequential factorization method using singular value decomposition (SVD) for recovering both the three-dimensional shape of an object and the motion of camera from a sequence of images. We employ paraperpective projection [6] for camera model to handle significant translational motion toward the camera or across the image. The proposed mthod not only quickly gives robust and accurate results, but also provides results at each frame becauseit is a sequential method. These properties make our method practically applicable to real time applications. Considerable research has been devoted to the problem of recovering motion and shape of object from image [2] [3] [4] [5] [6] [7] [8] [9]. Among many different approaches, we adopt a factorization method using SVD because of its robustness and computational efficiency. The factorization method based on batch-type computation, originally proposed by Tomasi and Kanade [1] proposed the feature trajectory information using singular value decomposition (SVD). Morita and Kanade [10] have extenened [1] to asequential type solution. However, Both methods used an orthographic projection and they cannot be applied to image sequences containing significant translational motion toward the camera or across the image. Poleman and Kanade [11] have developed a batch-type factorization method using paraperspective camera model is a sueful technique, the method cannot be employed for real-time applications because it is based on batch-type computation. This work presents a sequential factorization methodusing SVD for paraperspective projection. Initial experimental results show that the performance of our method is almost equivalent to that of [11] although it is sequential.

  • PDF

Extraction of the mode shapes of a segmented ship model with a hydroelastic response

  • Kim, Yooil;Ahn, In-Gyu;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.979-994
    • /
    • 2015
  • The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

Hydrolsis Behaviour of Antheraea pernyi Silk Fiber Treated with HCI (염산처리 작잠견사의 가수분해거동)

  • 권해용;이광길;이용우;여주홍;엄인철
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.163-168
    • /
    • 1998
  • Hydrolysis rate and activation energy of Antheraea pernyi silk fiber treated with HCI were examined. Thermal decomposition temperature and surface morphology were also investigated by using differential scanning calorimeter and scanning electron microscope. As the concentration of hydrochloric acid and the treatment temperature increased, the hydrolysis occurred more rapidly. The activation energy of Antheraea pernyi, 74.0 kJ/mol, was higher than that of Bombyx mori, 58.1 kJ/mol. As the concentration of hydrochloric acid increases, the activation energy of Antheraea pernyi decreased from 74.0 kJ/mol to 62.0 kJ/mol. The shape of acid-resistance fraction of Antheraea pernyi became more distroyed and was transformed from fiber to powdered form with an increase of hydrolysis rate. The thermal decomposition temperature of Antheraea pernyi was 360.8$^{\circ}C$ until the hydrolysis rate was 81.8 wt%, but ti decreased to 347.0$^{\circ}C$ when the hydrolysis rate was 93.8 wt%.

  • PDF

Comparing Thermal and Chemical Decomposition of Up-Cycled Ammonium Paratungstate(APT) (업싸이클링된 암모늄 파라텡스텐의 열적 및 화학적 분해법 비교)

  • Chung, Jun-Ki;On, Jin-Ho;Kim, Sung-Jin;Park, Sang-Yeup
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.274-278
    • /
    • 2015
  • The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. $WO_3$ particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at $600^{\circ}C$ in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the up-cycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in $658^{\circ}C$. The XRD results showed that APT completely decomposed to $WO_3$ by thermal decomposition and chemical precipitation. The particle size of the synthesized $WO_3$ powders by thermal decomposition with 2 h of planetary milling was around $2{\mu}m$ During the chemical precipitation process, the particle size of the synthesized $WO_3$ powders showed a round-shape with ${\sim}0.6{\mu}m$ size.

Shape Detection of Ellipsoidal Droplets Using Randomized Hough Transform (Randomized Hough 변환을 이용한 타원형 액적의 형상 검출)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1508-1515
    • /
    • 2003
  • In this study, the image processing program for deducing parameters of the elliptic shape of the partially overlapped liquid droplets was developed using the randomized Hough transform and the parameter decomposition. The procedure for the shape detection consists of three steps. For the first step, the candidate centers of ellipses are determined by the geometric property of the ellipse. Next, the rest parameters are estimated by the randomized Hough transform. In the final step for the post-processing, optimally approximated parameters of ellipses are determined. The developed program was applied to the simulated overlapped ellipses, real overlapped droplets, and real spray droplets. The shape detection was very excellent unless there existed inherent problems in original images. Moreover, this method can be used as an effective separating method for the overlapped small particles.