Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.6.274

Comparing Thermal and Chemical Decomposition of Up-Cycled Ammonium Paratungstate(APT)  

Chung, Jun-Ki (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University)
On, Jin-Ho (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University)
Kim, Sung-Jin (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University)
Park, Sang-Yeup (Technology Innovation Center for Fine Ceramics, Gangneung-Wonju National University)
Publication Information
Korean Journal of Materials Research / v.25, no.6, 2015 , pp. 274-278 More about this Journal
Abstract
The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. $WO_3$ particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at $600^{\circ}C$ in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the up-cycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in $658^{\circ}C$. The XRD results showed that APT completely decomposed to $WO_3$ by thermal decomposition and chemical precipitation. The particle size of the synthesized $WO_3$ powders by thermal decomposition with 2 h of planetary milling was around $2{\mu}m$ During the chemical precipitation process, the particle size of the synthesized $WO_3$ powders showed a round-shape with ${\sim}0.6{\mu}m$ size.
Keywords
$WO_3$; APT; chemical precipitation; thermal decomposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. F. Kieffer, Int. Tungsten Symposium Tungsten, 2d, San Francisco, June 1-5 (1982).
2 B. F. Kieffer, Int. J. Refract. Met. Hard Mater., 5, 65 (1986).
3 T. M. Latha and S. Venkatachalam, Hydrometallurgy, 22(3), 353 (1989).   DOI   ScienceOn
4 E. Lassner, Int. J. Refract. Met. Hard Mater., 13(1-3), 35 (1995).   DOI   ScienceOn
5 S. Venkateswaran, W-D. Schubert, B. Lux, M. Ostermann and B. Kieffer, Int J. Refract. Met. Hard Mater., 14(4), 263 (1996).   DOI   ScienceOn
6 V. V. Malyshev and A. I. Gab, Theor. Found. Chem. Eng., 41(4), 436 (2007).   DOI
7 J. C. Lee, E. Y. Kim, J. H. Kim, W. B. Kim, B. S. Kim and B. D. Pandey, Int J. Refract. Met. Hard Mater., 29(3), 365 (2011).   DOI   ScienceOn
8 A. K. Basu and F. R. Sale, J. Mater. Sci., 12(6), 1115 (1977).   DOI
9 S. A. A. Mansour, M. A. Mohamed and M. I. Zaki, Thermochim. Acta, 129(2), 187 (1988).   DOI   ScienceOn
10 J. G. Lake and W. R. Ott, Thermochim. Acta, 32(1-2), 225 (1979).   DOI   ScienceOn
11 M. S. Marashi, J. V. Khaki and S. M. Zebarjad, Int. J. Refract. Met. Hard Mater., 30(1), 177 (2012).   DOI   ScienceOn
12 A. O. Kalpakli, A. Arabaci, C. Kahruman and I. Yusufoglu, Int. J. Refract. Met. Hard Mater., 37, 106 (2013).   DOI   ScienceOn
13 T. M. Taylor, J. Am. Chem. Soc., 24(7), 629 (1902).   DOI