• 제목/요약/키워드: Shape Classification

검색결과 842건 처리시간 0.032초

이하두정방사선사진과 개별화 단층방사선사진을 이용한 하악과두의 형태에 관한 연구 (A STUDY OF THE MANDIBULAR CONDYLE SHAPE ON THE INDIVIDUALIZED CORRECTED TMJ TOMOGRAPH AND SUBMENTOVERTEX RADIOGRAPH)

  • 이상래
    • 치과방사선
    • /
    • 제24권2호
    • /
    • pp.227-236
    • /
    • 1994
  • The purpose of this study was to observe mandibular condyle shape in an asymptomatic population. In order to carry out this study, 96 temporomandibular joints in 48 adults(22 males, 26 females), who were asymptomatic for temporomandibular disturbances and had no history of prosthodontic or orthodontic treatments, were selected, and radiographed using the Sectograph(Denar Co., U.S.A.) for lateral and frontal individualized corrected TMJ tomograph and submentovertex radiograph. Mandibular condyles were classified morphologically, and measured medioateral and anteroposterior dimensions and condylar angulation. The obtained results were as follows. 1. In the classification of condyle shape on lateral tomographs, 94.8% were convex type and 5.2% were angled type. 2. In the classification of condyle shape on frontal tomographs, 45.3% were convex type, 32.0% were round type, 16.0% were flat type, and 6.7% were angled type. 3. In the classification of condyle shape on submentovertex radiographs, 34.5% were flat-convex type, 22.9% were flat-flat type, 20.8% were concave-convex type, 19.8% were convex-convex type, and 1.0% were concave-flat type and convex-flat type. Concave-concave type, convex-concave type, and flat-concave type were not observed. 4. The average mediolateral legth of the condyle was 19.3㎜ and the average anteroposterior length was 9.4㎜. The average angle between the long axis of condyle and the coronal plane made on submentovertex view was 19.6 degrees.

  • PDF

실리콘 웨이퍼 마이크로크랙을 위한 대표적 분류 기술의 성능 평가에 관한 연구 (A Study on Performance Evaluation of Typical Classification Techniques for Micro-cracks of Silicon Wafer)

  • 김상연;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.6-11
    • /
    • 2016
  • Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.

정량적 초음파 시험을 위한 결함분류와 크기산정의 새로운 기법 (New Approaches to Flaw Classification and Sizing for Quantitative Ultrasonic Testing)

  • 송성진
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.3-16
    • /
    • 1997
  • In modern high performance engineering applications, the structural integrity of materials and structures are quite often evaluated using fracture mechanics. This evaluation in turn requires information on the flaw geometry (location, type, shape, size, and orientation). The ultrasonic nondestructive evaluation (NDE) method is one technique that is commonly used to provide such information. Flaw classification (determination of the flaw type ) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues for quantitative ultrasonic NDE. In this paper new approaches to both classification and sizing of flaws are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent (TOFE) sizing method is presented. The techniques proposed here are in a form that can be used directly in many practical applications to quantitative estimates of the flaw's significance.

  • PDF

형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법 (A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features)

  • 양동원
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.97-105
    • /
    • 2020
  • 열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구 (Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide)

  • 이상곤;이재은;이태규;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

Adaptive Fuzzy Inference Algorithm for Shape Classification

  • Kim, Yoon-Ho;Ryu, Kwang-Ryol
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.611-618
    • /
    • 2000
  • This paper presents a shape classification method of dynamic image based on adaptive fuzzy inference. It describes the design scheme of fuzzy inference algorithm which makes it suitable for low speed systems such as conveyor, uninhabited transportation. In the first Discrete Wavelet Transform(DWT) is utilized to extract the motion vector in a sequential images. This approach provides a mechanism to simple but robust information which is desirable when dealing with an unknown environment. By using feature parameters of moving object, fuzzy if - then rule which can be able to adapt the variation of circumstances is devised. Then applying the implication function, shape classification processes are performed. Experimental results are presented to testify the performance and applicability of the proposed algorithm.

  • PDF

호몰로지를 이용한 형태 분류 기법 제안 (Proposing the Technique of Shape Classification Using Homology)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제21권1호
    • /
    • pp.10-17
    • /
    • 2018
  • Persistence Betty numbers, which are the rank of the persistent homology, are a generalized version of the size theory widely known as a descriptor for shape analysis. They show robustness to both perturbations of the topological space that represents the object, and perturbations of the function that measures the shape properties of the object. In this paper, we present a shape matching algorithm which is based on the use of persistence Betty numbers. Experimental tests are performed with Kimia dataset to show the effectiveness of the proposed method.

지수치를 이용한 노년 여성의 상반신 체형 분류와 판별에 관한 연구 (Upper Body Somatotype Classification and Discrimination of Elderly Women according to Index)

  • 김수아;최혜선
    • 한국의류학회지
    • /
    • 제28권7호
    • /
    • pp.983-994
    • /
    • 2004
  • The aim of this study is to provide fundamental data on the development of ready-to-wear clothes appropriate for the body types of elderly women. The study was conducted targeting 318 elderly women over 60 years of age whose fields of action were colleges for the elderly, sports centers, or business sites in Seoul and the neighboring districts. A total of 44 features in the upper body were used for the anthropometric measurement and analysis using anthropometry and photometry. The results of the study are as follows: 1. Somatotypes were classified into three types according to a cluster analysis using height and weight indices. Type 1 is the group with long and undersized upper body and straight body type since the face of the upper body is long relative to height and width, girth and depth are the smallest relative to weight, the breasts are somewhat fat, with a small extent of drooping and a straight back. Type 2 is the group that is considered fat relative to the body, has broad shoulders, drooping breasts with a wide space between them, and a back-bent upper body. Type 3 is the group that has a bent shape, the shortest upper body relative to height, and showing average obesity factors. 2. Indices of height and weight were used for factor analysis, cluster analysis, and discriminant analysis in order to classify upper body somatotype according to shape while excluding size factors of elderly women's upper body somatotype. The same method was used to compare and verify the result according to the absolute measurement and height index. Classification based on height and weight indices demonstrate that such somatotype classification minimizes the personal equation of body shape and it induces better classification based on shape as the results showed the highest cumulative sum of square(CUSUM) at 78.38% while six factors showed the smallest result and the hit rate for the classified three groups showed the highest result at 95.30%.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

지문 영상의 자동 분류에 관한 연구 (A Study on Automatic Classification of Fingerprint Images)

  • 임인식;신태민;박구만;이병래;박규태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.628-631
    • /
    • 1988
  • This paper describes a fingerprint classification on the basis of feature points(whorl, core) and feature vector and uses a syntactic approach to identify the shape of flow line around the core. Fingerprint image is divided into 8 by 8 subregions and fingerprint region is separated from background. For each subregion of fingerprint region, the dominant ridge direction is obtained to use the slit window quantized in 8 direction and relaxation is performed to correct ridge direction code. Feature points(whorl, core, delta) are found from the ridge direction code. First classification procedure divides the types of fingerprint into 4 class based on whorl and cores. The shape of flow line around the core is obtained by tracing for the fingerprint which has one core or two core and is represented as string. If the string is acceptable by LR(1) parser, feature vector is obtained from feature points(whorl, core, delta) and the shape of flow line around the core. Feature vector is used hierarchically and linearly to classify fingerprint again. The experiment resulted in 97.3 percentages of sucessful classification for 71 fingerprint impressions.

  • PDF