• 제목/요약/키워드: Shape Accuracy

검색결과 1,648건 처리시간 0.031초

3차원 형체복원에 있어서 측정면에 적응적인 초점화소 탐색영역 결정기법 (Shape Adaptive Searching Region to Find Focused Image Points in 3D Shape Reconstruction)

  • 김현태;한문용;홍민철;차형태;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.77-77
    • /
    • 2000
  • The shape of small or curved object is usually reconstructed using a single camera by moving its lens position to find a sequence of the focused images. Most conventional methods have used a window with fixed shape to test the focus measure, which resulted in a deterioration of accuracy. To solve this problem, this paper proposes a new approach of using a shape adaptive window. It estimates the shape of the object at every step and applies the same shape of window to calculate the focus measure. Focus measure is based on the variance of the pixels inside the window. This paper includes the experimental results.

  • PDF

선삭가공에서의 형상 정밀도에 대한 평가 (Evaluation of the Shape Accuracy of Turning Operations)

  • 박동근;이준성
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1645-1651
    • /
    • 2015
  • 본 연구에서는 선삭 작업에서 가공 여유각 변경에 따른 피삭재의 형상정밀도가 어떻게 변화되는지 분석하고자 하였다. 피삭재는 3가지로 SM45C(기계구조용탄소강), SCM415(크롬몰리브덴강), STS303(스테인리스강)을 선택하여 정해진 가공조건인 회전속도 2,500 rpm으로 시작하여 이송속도 0.07 mm/rev와 0.10 mm/rev를 기준으로 가공깊이 0.1 mm, 0.2 mm, 0.3 mm 그리고, 절인 경사각인 네거티브 경사각 $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$, $0.9^{\circ}(-6.9^{\circ})$의 3가지 형태로 가공하였을 경우, 재료별 가공정밀도, 원통도, 동축도, 진원도 등의 결과를 비교 분석하였다. 피삭재의 재질별로 알아본 원통도의 정밀도는 $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$의 순으로 $0.9^{\circ}$일 경우가 가장 좋은 원통도 값을 나타냈다. 결과적으로 바이트의 네거티브 경사각이 커지면 정밀도가 특정 부분에서 재질에 관계없이 좋아져서 가공성이 향상됨을 알 수 있었다. 또한, 이송속도와 절삭 깊이에 따라 가공형상이 변화한다는 것과 재질에 따라 다르게 적용되어야 한다는 것을 확인하게 되었다.

EFGM에서 필수경계조건 처리를 위한 형상함수 수정법 (Shape Function Modification for the Imposition of EFGM Essential Boundary Conditions)

  • 석병호;송태한;임장근
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.803-809
    • /
    • 2000
  • For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

성형공법에 따른 초고강도 모자형 박판부품 형상정밀도 평가 (Quantitative Evaluation of Shape Accuracy in a Hat-type Product with UHSS according to the Forming Procedure)

  • 최병현;김세호;김흥규
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1111-1117
    • /
    • 2013
  • In this paper, the shape accuracy of the stamped hat-type product is quantified and analyzed with ultra high strength steel (UHSS) sheets. The shape of the hat-type product is designed in order to simplify the geometry of the side sill and the stamping methodology is proposed in order to verify the effect of the stamping procedure on the springback amount. Experiments and finite element analyses are conducted with four kinds of the forming sequences. The springback amounts are measured and compared according to the forming procedure with the embossing shape. Experimental result in company with analysis one illustrate that the springback amount is reduced with embossing in the padding operation. They also fully demonstrates the proposed forming procedure and the analysis method can be effectively applied to the process design for producing parts with ultra high strength steel.

철강 용접부 열해석 정도 향상에 관한 연구 (A Study on the Improvement of Numerical Thermal Analysis for Steel Welds)

  • 강윤희;김충명;홍현욱;이종봉
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is the first part of the study on the accuracy improvement of numerical analysis of steel welds. The aim of this paper is to raise the accuracy of thermal analysis results, such as the shape and size of the weld cross section and the hardness distribution in HAZ(Heat-Affected Zone). It is known that the factors affecting on the accuracy are thermal properties, metallurgical properties and welding heat source model. It was found that the arbitrary distributed heat source model should be used to predict practical weld cross section shape and size. Also, in order to improve the prediction accuracy of HAZ hardness distribution, it was essential to consider 2 CCT(Continuous Cooling Transformation) diagrams in calculating volume fraction of transformed phases. One is the peak temperature being around melting temperature. The other is the peak temperature being around metallurgical transformation temperature.

토공현장 적용성 검증을 위한 MMS 정밀도 분석 (MMS Accuracy Analysis for Earthwork Site Application)

  • 박재우;김석
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.183-189
    • /
    • 2019
  • Researches utilizing the fourth industrial revolution technology are being conducted as a breakthrough for improving the earthworker productivity. In order to make the earthwork site smarter, it is necessary to digitize the construction site topography at first. For this purpose, photogrammetry using drones and LiDAR on MMS have been recently used. The purpose of this study is to analyze the accuracy of LiDAR by installation angles for verifying the application of MMS in the construction site. As a result of comparing the coordinates measured by the total station and the LiDAR, a small error of about 1-2 centimeters was shown. It is confirmed that MMS could be well applied to the earthwork site. In addition, there was no significant difference in the accuracy of the acquired coordinates according to the installation angle of the LiDAR, but the shape of the point clouds was different. The larger the installation angle, the better the shape of the site terrain is measured.

형상최적화 향상을 위한 유한요소의 개선에 관한 연구 (A Study on the Modification of a Finite Element for Improving Shape Optimization)

  • 성진일;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Patch-wise Robust Active Shape Model using Point Reliance Measurement

  • Hong, Sungmin;Park, Sanghyun;Yun, Il Dong;Lee, Sang Uk
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.471-472
    • /
    • 2012
  • The active shape model(ASM) is one of the most popular methods among the shape prior based segmentation methods based on its strong shape constraints using the statistic of shape information which is acquired from the training set. ASM has a few drawbacks, such as, the lack of shape variability, and the sensitivity for false locally searched points. In this paper, we suggest the patch-wise robust ASM to overcome the limitations of the ASM. In addition to the SSM, we introduce the patch-wise SSM, to reduce the shape inflexibility and to search reliable points with the point reliance measurement. The quantitative and qualitative results show the robustmness and the accuracy of the proposed method.

  • PDF

경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석 (Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method)

  • 이부윤;임문혁
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.