• Title/Summary/Keyword: Shape Accuracy

Search Result 1,648, Processing Time 0.028 seconds

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

A Study on the Machining Accuracy Evaluation Method of High Speed Machining (고속가공 시스템의 가공정밀도 평가방법에 관한 연구)

  • 손덕수;유중학;최성주;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.94-99
    • /
    • 2002
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with these methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학예서 Geometry정보를 이용한 정밀도 향상에 관한 연구)

  • 김연술;이희관;황금종;공영식;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.546-550
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method(LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

  • PDF

A Study on 6 Edges Reamer for the Improvement of Accuracy of Automotive Cylinder Head Guide Pin (자동차 실린더헤드 가이드 핀의 정밀도 향상을 위한 6날 리머에 관한 연구)

  • Kim Hae-Ji;Kim Nam-Kyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.81-86
    • /
    • 2004
  • Generally, automotive cylinder head is manufactured by FCD45 material that is hard to cutting materials, and it needs the accurate machining tool fir higher output of engine. This paper is concerned with a study on TiN coated 6 edges reamer for improving machining accuracy of cylinder head guide pin. The reamer shape is changed from 4 edges to 6 edges for the improvement of machining accuracy. Also, TiN coating is applied to the improvement of surface roughness of cylinder head guide pin and tool life of 6 edges reamer. It is noted that 6 edges reamer are effective in controlling the dimensional accuracy and surface roughness as well as increasing tool life.

Sensitivity Property of Generalized CMAC Neural Network

  • Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • Generalized CMAC (GCMAC) is a type of neural network known to be fast in learning. The network may be useful in structural engineering applications such as the identification and the control of structures. The derivatives of a trained GCMAC is relatively poor in accuracy. Therefore to improve the accuracy, a new algorithm is proposed. If GCMAC is directly differentiated, the accuracy of the derivative is not satisfactory. This is due to the quantization of input space and the shape of basis function used. Using the periodicity of the predicted output by GCMAC, the derivative can be improved to the extent of having almost no error. Numerical examples are considered to show the accuracy of the proposed algorithm.

  • PDF

Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems (정탄성학 문제에서 경계 기반 형상설계 민감도 해석)

  • Won Jun-Ho;Choi Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.

Dynamic Behavior of the Plane Circular Arches with the Shape Imperfections (형상불완전을 갖는 평면 원호 아치의 동적 거동)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.85-93
    • /
    • 2001
  • In this study, a computer program considering shape imperfections of arch under dynamic loading was developed. The shape imperfection of arch was assumed as higher degree polynomial expressed as $\omega$$_{i}$ = $\omega$$_{o}$ (1-(2$\chi$/L)$^{m}$ )$^n$and sinusoidal curve such as $\omega$$_{i}$ = $\omega$$_{o}$ sin(η$\pi$$\chi$/L). In finite element formulation, the material nonlinear behavior was assumed the elasto-viscoplastic model highly corresponding to the real behavior of the material and the geometrically nonlinear behavior was modeled using Lagrangian description of motion. Also, the behavior of steel was modeled by applying yield criteria of Von Mises. The developed program was applied to the analysis of the dynamic behavior for the clamped beam subjected to the concentrated load at midspan and the results were compared with those from other research to investigate accuracy of the presented finite element program. In numerical examples, the shape imperfections of L/500, L/1,000 and L/2,000 were considered and the modes of shape imperfections of the symmetric and antisymmetric were adopted. The effects of the shape imperfections on the dynamic behavior of arch were conspicuous and results of analysis indicate that the reasonable values of arch rise to arch span ratio ranged between 0.1 and 0.3.

  • PDF

Measurement Accuracy for 3D Structure Shape Change using UAV Images Matching (UAV 영상정합을 통한 구조물 형상변화 측정 정확도 연구)

  • Kim, Min Chul;Yoon, Hyuk Jin;Chang, Hwi Jeong;Yoo, Jong Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Recently, there are many studies related aerial mapping project and 3 dimensional shape and model reconstruction using UAV(unmanned aerial vehicle) system and images. In this study, we create 3D reconstruction point data using image matching technology of the UAV overlap images, detect shape change of structure and perform accuracy assessment of area($m^2$) and volume($m^3$) value. First, we build the test structure model data and capturing its images of shape change Before and After. Second, for post-processing the Before dataset is convert the form of raster format image to ensure the compare with all 3D point clouds of the After dataset. The result shows high accuracy in the shape change of more than 30 centimeters, but less is still it becomes difficult to apply because of image matching technology has its own limits. But proposed methodology seems very useful to detect illegal any structures and the quantitative analysis of the structure's a certain amount of damage and management.